Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 307 (5709): 596-600

Copyright © 2005 by the American Association for the Advancement of Science

Small CTD Phosphatases Function in Silencing Neuronal Gene Expression

Michele Yeo,1*{dagger} Soo-Kyung Lee,2*{ddagger} Bora Lee,2{ddagger} Esmeralda C. Ruiz,2 Samuel L. Pfaff,2 Gordon N. Gill1§

Abstract: Neuronal gene transcription is repressed in non-neuronal cells by the repressor element 1 (RE-1)–silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) complex. To understand how this silencing is achieved, we examined a family of class-C RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD) phosphatases [small CTD phosphatases (SCPs) 1 to 3], whose expression is restricted to non-neuronal tissues. We show that REST/NRSF recruits SCPs to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells. Phosphatase-inactive forms of SCP interfere with REST/NRSF function and promote neuronal differentiation of P19 stem cells. Likewise, small interfering RNA directed to the single Drosophila SCP unmasks neuronal gene expression in S2 cells. Thus, SCP activity is an evolutionarily conserved transcriptional regulator that acts globally to silence neuronal genes.

1 Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
2 The Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA.

Back to Top

* These two authors contributed equally to this work.

{dagger} Present address: Neurology Division, Duke University Medical Center, Durham, NC 27710, USA.

{ddagger} Present address: Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Room 132C, Houston, TX 77030, USA.

§ To whom correspondence should be addressed. E-mail: ggill{at}ucsd.edu

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Evolutionary and Structural Analyses of Mammalian Haloacid Dehalogenase-type Phosphatases AUM and Chronophin Provide Insight into the Basis of Their Different Substrate Specificities.
A. Seifried, G. Knobloch, P. S. Duraphe, G. Segerer, J. Manhard, H. Schindelin, J. Schultz, and A. Gohla (2014)
J. Biol. Chem. 289, 3416-3431
   Abstract »    Full Text »    PDF »
Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways.
A. A. de Cubas, L. J. Leandro-Garcia, F. Schiavi, V. Mancikova, I. Comino-Mendez, L. Inglada-Perez, M. Perez-Martinez, N. Ibarz, P. Ximenez-Embun, E. Lopez-Jimenez, et al. (2013)
Endocr. Relat. Cancer 20, 477-493
   Abstract »    Full Text »    PDF »
EWS and RE1-Silencing Transcription Factor Inhibit Neuronal Phenotype Development and Oncogenic Transformation in Ewing Sarcoma.
S. Sankar, N. C. Gomez, R. Bell, M. Patel, I. J. Davis, S. L. Lessnick, and W. Luo (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
The RNA polymerase II CTD coordinates transcription and RNA processing.
J.-P. Hsin and J. L. Manley (2012)
Genes & Dev. 26, 2119-2137
   Abstract »    Full Text »    PDF »
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation.
C. Hintermair, M. Heidemann, F. Koch, N. Descostes, M. Gut, I. Gut, R. Fenouil, P. Ferrier, A. Flatley, E. Kremmer, et al. (2012)
EMBO J. 31, 2784-2797
   Abstract »    Full Text »    PDF »
MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein.
Y. Zhu, Y. Lu, Q. Zhang, J.-J. Liu, T.-J. Li, J.-R. Yang, C. Zeng, and S.-M. Zhuang (2012)
Nucleic Acids Res. 40, 4615-4625
   Abstract »    Full Text »    PDF »
Huntingtin Aggregation Kinetics and Their Pathological Role in a Drosophila Huntington's Disease Model.
K. R. Weiss, Y. Kimura, W.-C. M. Lee, and J. T. Littleton (2012)
Genetics 190, 581-600
   Abstract »    Full Text »    PDF »
The enemy within: intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis.
J. Han, A. M. Denli, and F. H. Gage (2012)
Genes & Dev. 26, 6-10
   Abstract »    Full Text »    PDF »
Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2.
H. Dill, B. Linder, A. Fehr, and U. Fischer (2012)
Genes & Dev. 26, 25-30
   Abstract »    Full Text »    PDF »
miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the Notch signaling pathway.
J. S. Chen, M. S. Pedro, and R. W. Zeller (2011)
Development 138, 4943-4953
   Abstract »    Full Text »    PDF »
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.
X. Guo, J. L. Engel, J. Xiao, V. S. Tagliabracci, X. Wang, L. Huang, and J. E. Dixon (2011)
PNAS 108, 18649-18654
   Abstract »    Full Text »    PDF »
Coassembly of REST and its cofactors at sites of gene repression in embryonic stem cells.
H.-B. Yu, R. Johnson, G. Kunarso, and L. W. Stanton (2011)
Genome Res. 21, 1284-1293
   Abstract »    Full Text »    PDF »
Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions.
J. J. Abrajano, I. A. Qureshi, S. Gokhan, A. E. Molero, D. Zheng, A. Bergman, and M. F. Mehler (2010)
PNAS 107, 16685-16690
   Abstract »    Full Text »    PDF »
Novel Repression of Kcc2 Transcription by REST-RE-1 Controls Developmental Switch in Neuronal Chloride.
M. Yeo, K. Berglund, G. Augustine, and W. Liedtke (2009)
J. Neurosci. 29, 14652-14662
   Abstract »    Full Text »    PDF »
Modifications of RNA polymerase II are pivotal in regulating gene expression states.
E. Brookes and A. Pombo (2009)
EMBO Rep. 10, 1213-1219
   Abstract »    Full Text »    PDF »
Targeting Protein Serine/Threonine Phosphatases for Drug Development.
J. L. McConnell and B. E. Wadzinski (2009)
Mol. Pharmacol. 75, 1249-1261
   Abstract »    Full Text »    PDF »
PP2A regulates BMP signalling by interacting with BMP receptor complexes and by dephosphorylating both the C-terminus and the linker region of Smad1.
L. Bengtsson, R. Schwappacher, M. Roth, J. H. Boergermann, S. Hassel, and P. Knaus (2009)
J. Cell Sci. 122, 1248-1257
   Abstract »    Full Text »    PDF »
Small C-terminal Domain Phosphatase Enhances Snail Activity through Dephosphorylation.
Y. Wu, B. M. Evers, and B. P. Zhou (2009)
J. Biol. Chem. 284, 640-648
   Abstract »    Full Text »    PDF »
A Novel Protein Phosphatase is a Binding Partner for the Protein Kinase Domains of UNC-89 (Obscurin) in Caenorhabditis elegans.
H. Qadota, L. A. McGaha, K. B. Mercer, T. J. Stark, T. M. Ferrara, and G. M. Benian (2008)
Mol. Biol. Cell 19, 2424-2432
   Abstract »    Full Text »    PDF »
Regulation of Tryptophan Hydroxylase-2 Gene Expression by a Bipartite RE-1 Silencer of Transcription/Neuron restrictive Silencing Factor (REST/NRSF) Binding Motif.
P. D. Patel, D. A. Bochar, D. L. Turner, F. Meng, H. M. Mueller, and C. G. Pontrello (2007)
J. Biol. Chem. 282, 26717-26724
   Abstract »    Full Text »    PDF »
Transgene-Induced Silencing of the Zoosporogenesis-Specific NIFC Gene Cluster of Phytophthora infestans Involves Chromatin Alterations.
H. S. Judelson and S. Tani (2007)
Eukaryot. Cell 6, 1200-1209
   Abstract »    Full Text »    PDF »
Genome-Wide Mapping of in Vivo Protein-DNA Interactions.
D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold (2007)
Science 316, 1497-1502
   Abstract »    Full Text »    PDF »
The Repressor Element 1-Silencing Transcription Factor Regulates Heart-Specific Gene Expression Using Multiple Chromatin-Modifying Complexes.
A. J. Bingham, L. Ooi, L. Kozera, E. White, and I. C. Wood (2007)
Mol. Cell. Biol. 27, 4082-4092
   Abstract »    Full Text »    PDF »
A conserved phosphatase cascade that regulates nuclear membrane biogenesis.
Y. Kim, M. S. Gentry, T. E. Harris, S. E. Wiley, J. C. Lawrence Jr, and J. E. Dixon (2007)
PNAS 104, 6596-6601
   Abstract »    Full Text »    PDF »
The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development.
J. Visvanathan, S. Lee, B. Lee, J. W. Lee, and S.-K. Lee (2007)
Genes & Dev. 21, 744-749
   Abstract »    Full Text »    PDF »
Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-beta Pathways.
G. Sapkota, M. Knockaert, C. Alarcon, E. Montalvo, A. H. Brivanlou, and J. Massague (2006)
J. Biol. Chem. 281, 40412-40419
   Abstract »    Full Text »    PDF »
Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-beta Signaling.
K. H. Wrighton, D. Willis, J. Long, F. Liu, X. Lin, and X.-H. Feng (2006)
J. Biol. Chem. 281, 38365-38375
   Abstract »    Full Text »    PDF »
Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene.
C. S. Kim, H. S. Choi, C. K. Hwang, K. Y. Song, B.-K. Lee, P.-Y. Law, L.-N. Wei, and H. H. Loh (2006)
Nucleic Acids Res. 34, 6392-6403
   Abstract »    Full Text »    PDF »
Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire.
A. Mortazavi, E. C. L. Thompson, S. T. Garcia, R. M. Myers, and B. Wold (2006)
Genome Res. 16, 1208-1221
   Abstract »    Full Text »    PDF »
Arabidopsis Carboxyl-Terminal Domain Phosphatase-Like Isoforms Share Common Catalytic and Interaction Domains But Have Distinct in Planta Functions.
W. Bang, S. Kim, A. Ueda, M. Vikram, D. Yun, R. A. Bressan, P. M. Hasegawa, J. Bahk, and H. Koiwa (2006)
Plant Physiology 142, 586-594
   Abstract »    Full Text »    PDF »
Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling.
M. Knockaert, G. Sapkota, C. Alarcon, J. Massague, and A. H. Brivanlou (2006)
PNAS 103, 11940-11945
   Abstract »    Full Text »    PDF »
Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription.
J. Thompson, T. Lepikhova, N. Teixido-Travesa, M. A. Whitehead, J. J. Palvimo, and O. A. Janne (2006)
EMBO J. 25, 2757-2767
   Abstract »    Full Text »    PDF »
RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development..
P. Olguin, P. Oteiza, E. Gamboa, J. L. Gomez-Skarmeta, and M. Kukuljan (2006)
J. Neurosci. 26, 2820-2829
   Abstract »    Full Text »    PDF »
The Expression of Endothelial Nitric-oxide Synthase Is Controlled by a Cell-specific Histone Code.
J. E. Fish, C. C. Matouk, A. Rachlis, S. Lin, S. C. Tai, C. D'Abreo, and P. A. Marsden (2005)
J. Biol. Chem. 280, 24824-24838
   Abstract »    Full Text »    PDF »
A structural perspective of CTD function.
A. Meinhart, T. Kamenski, S. Hoeppner, S. Baumli, and P. Cramer (2005)
Genes & Dev. 19, 1401-1415
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882