Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 307 (5709): 600-604

Copyright © 2005 by the American Association for the Advancement of Science

Illumination of the Melanopsin Signaling Pathway

Satchidananda Panda,*{dagger}{ddagger} Surendra K. Nayak,* Brice Campo, John R. Walker, John B. Hogenesch,§ Tim Jegla{dagger}

Abstract: In mammals, a small population of intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a key role in the regulation of nonvisual photic responses, such as behavioral responses to light, pineal melatonin synthesis, pupillary light reflex, and sleep latency. These ipRGCs also express melanopsin (Opn4), a putative opsin-family photopigment that has been shown to play a role in mediating these nonvisual photic responses. Melanopsin is required for the function of this inner retinal pathway, but its precise role in generating photic responses has not yet been determined. We found that expression of melanopsin in Xenopus oocytes results in light-dependent activation of membrane currents through the G{alpha}q/G{alpha}11 G protein pathway, with an action spectrum closely matching that of melanopsin-expressing ipRGCs and of behavioral responses to light in mice lacking rods and cones. When coexpressed with arrestins, melanopsin could use all-trans-retinaldehyde as a chromophore, which suggests that it may function as a bireactive opsin. We also found that melanopsin could activate the cation channel TRPC3, a mammalian homolog of the Drosophila phototransduction channels TRP and TRPL. Melanopsin therefore signals more like an invertebrate opsin than like a classical vertebrate rod-and-cone opsin.

Genomics Institute of Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA.

Back to Top

Note added in proof: Similar findings have recently been reported (30, 31).

* These authors contributed equally to this work.

{ddagger} Present address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

§ Present address: Scripps Florida, FAU-Building MC-17, 5353 Parkside Drive, Jupiter, FL 33458, USA.

{dagger} To whom correspondence should be addressed. E-mail: satchin{at}salk.edu, tjegla{at}gnf.org


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels.
K. Itsuki, Y. Imai, H. Hase, Y. Okamura, R. Inoue, and M. X. Mori (2014)
J. Gen. Physiol. 143, 183-201
   Abstract »    Full Text »    PDF »
UV light activates a G{alpha}q/11-coupled phototransduction pathway in human melanocytes.
N. W. Bellono, J. A. Najera, and E. Oancea (2014)
J. Gen. Physiol. 143, 203-214
   Abstract »    Full Text »    PDF »
Nocturnal Light Exposure Impairs Affective Responses in a Wavelength-Dependent Manner.
T. A. Bedrosian, C. A. Vaughn, A. Galan, G. Daye, Z. M. Weil, and R. J. Nelson (2013)
J. Neurosci. 33, 13081-13087
   Abstract »    Full Text »    PDF »
Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness.
D. J. Valdez, P. S. Nieto, N. M. Diaz, E. Garbarino-Pico, and M. E. Guido (2013)
FASEB J 27, 2702-2712
   Abstract »    Full Text »    PDF »
Human melanopsin forms a pigment maximally sensitive to blue light ({lambda}max {approx} 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades.
H. J. Bailes and R. J. Lucas (2013)
Proc R Soc B 280, 20122987
   Abstract »    Full Text »    PDF »
Nocturnal Light and Nocturnal Rodents: Similar Regulation of Disparate Functions?.
L. P. Morin (2013)
J Biol Rhythms 28, 95-106
   Abstract »    Full Text »    PDF »
UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes.
N. W. Bellono, L. G. Kammel, A. L. Zimmerman, and E. Oancea (2013)
PNAS 110, 2383-2388
   Abstract »    Full Text »    PDF »
Human phase response curve to intermittent blue light using a commercially available device.
V. L. Revell, T. A. Molina, and C. I. Eastman (2012)
J. Physiol. 590, 4859-4868
   Abstract »    Full Text »    PDF »
Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision.
M. E. Estevez, P. M. Fogerson, M. C. Ilardi, B. G. Borghuis, E. Chan, S. Weng, O. N. Auferkorte, J. B. Demb, and D. M. Berson (2012)
J. Neurosci. 32, 13608-13620
   Abstract »    Full Text »    PDF »
Chromatic Pupillometry Dissects Function of the Three Different Light-Sensitive Retinal Cell Populations in RPE65 Deficiency.
B. Lorenz, E. Strohmayr, S. Zahn, C. Friedburg, M. Kramer, M. Preising, and K. Stieger (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5641-5652
   Abstract »    Full Text »    PDF »
Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo.
T. J. Sexton, M. Golczak, K. Palczewski, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 20888-20897
   Abstract »    Full Text »    PDF »
Human Nonvisual Responses to Simultaneous Presentation of Blue and Red Monochromatic Light.
C. Papamichael, D. J. Skene, and V. L. Revell (2012)
J Biol Rhythms 27, 70-78
   Abstract »    Full Text »    PDF »
Light-sensitive coupling of rhodopsin and melanopsin to Gi/o and Gq signal transduction in Caenorhabditis elegans.
P. Cao, W. Sun, K. Kramp, M. Zheng, D. Salom, B. Jastrzebska, H. Jin, K. Palczewski, and Z. Feng (2012)
FASEB J 26, 480-491
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
Shedding new light on opsin evolution.
M. L. Porter, J. R. Blasic, M. J. Bok, E. G. Cameron, T. Pringle, T. W. Cronin, and P. R. Robinson (2012)
Proc R Soc B 279, 3-14
   Abstract »    Full Text »    PDF »
Effect of Circadian Clock Gene Mutations on Nonvisual Photoreception in the Mouse.
L. Owens, E. Buhr, D. C. Tu, T. L. Lamprecht, J. Lee, and R. N. Van Gelder (2012)
Invest. Ophthalmol. Vis. Sci. 53, 454-460
   Abstract »    Full Text »    PDF »
Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6.
M. P. Lesser, K. L. Carleton, S. A. Bottger, T. M. Barry, and C. W. Walker (2011)
Proc R Soc B 278, 3371-3379
   Abstract »    Full Text »    PDF »
Early Onset and Differential Temporospatial Expression of Melanopsin Isoforms in the Developing Chicken Retina.
D. M. Verra, M. A. Contin, D. Hicks, and M. E. Guido (2011)
Invest. Ophthalmol. Vis. Sci. 52, 5111-5120
   Abstract »    Full Text »    PDF »
A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice.
H. Ye, M. D.-E. Baba, R.-W. Peng, and M. Fussenegger (2011)
Science 332, 1565-1568
   Abstract »    Full Text »    PDF »
Dynamin- and Rab5-dependent endocytosis is required to prevent Drosophila photoreceptor degeneration.
N. Pinal and F. Pichaud (2011)
J. Cell Sci. 124, 1564-1570
   Abstract »    Full Text »    PDF »
Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex.
M. P. Butler and R. Silver (2011)
Proc R Soc B 278, 745-750
   Abstract »    Full Text »    PDF »
Photoentrainment in blind and sighted rodent species: responses to photophase light with different wavelengths.
A. E. Zubidat, R. J. Nelson, and A. Haim (2010)
J. Exp. Biol. 213, 4213-4222
   Abstract »    Full Text »    PDF »
Light Activation of the Phosphoinositide Cycle in Intrinsically Photosensitive Chicken Retinal Ganglion Cells.
M. A. Contin, D. M. Verra, G. Salvador, M. Ilincheta, N. M. Giusto, and M. E. Guido (2010)
Invest. Ophthalmol. Vis. Sci. 51, 5491-5498
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive Retinal Ganglion Cells.
M. T. H. Do and K.-W. Yau (2010)
Physiol Rev 90, 1547-1581
   Abstract »    Full Text »    PDF »
Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light.
J. J. Gooley, S. M. W. Rajaratnam, G. C. Brainard, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley (2010)
Science Translational Medicine 2, 31ra33
   Abstract »    Full Text »    PDF »
In Vivo Quantification of the Retinal Reflectance Spectral Composition in Elderly Subjects before and after Cataract Surgery: Implications for the Non-Visual Effects of Light.
M. C. Gimenez, M. J. Kanis, D. G. M. Beersma, B. A. E. van der Pol, D. van Norren, and M. C. M. Gordijn (2010)
J Biol Rhythms 25, 123-131
   Abstract »    PDF »
Eye evolution: common use and independent recruitment of genetic components.
P. Vopalensky and Z. Kozmik (2009)
Phil Trans R Soc B 364, 2819-2832
   Abstract »    Full Text »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Circadian Modulation of Melanopsin-Driven Light Response in Rat Ganglion-Cell Photoreceptors.
S. Weng, K. Y. Wong, and D. M. Berson (2009)
J Biol Rhythms 24, 391-402
   Abstract »    PDF »
Differential Expression of Two Distinct Functional Isoforms of Melanopsin (Opn4) in the Mammalian Retina.
S. S. Pires, S. Hughes, M. Turton, Z. Melyan, S. N. Peirson, L. Zheng, M. Kosmaoglou, J. Bellingham, M. E. Cheetham, R. J. Lucas, et al. (2009)
J. Neurosci. 29, 12332-12342
   Abstract »    Full Text »    PDF »
Melatonin and Reproduction Revisited.
R. J. Reiter, D.-X. Tan, L. C. Manchester, S. D. Paredes, J. C. Mayo, and R. M. Sainz (2009)
Biol Reprod 81, 445-456
   Abstract »    Full Text »    PDF »
Light-transduction in melanopsin-expressing photoreceptors of Amphioxus.
M. del Pilar Gomez, J. M. Angueyra, and E. Nasi (2009)
PNAS 106, 9081-9086
   Abstract »    Full Text »    PDF »
Transcriptome Analysis of the Circadian Regulatory Network in the Coral Acropora millepora.
P. D. Vize (2009)
Biol. Bull. 216, 131-137
   Abstract »    Full Text »    PDF »
Physiology and pathophysiology of canonical transient receptor potential channels.
J. Abramowitz and L. Birnbaumer (2009)
FASEB J 23, 297-328
   Abstract »    Full Text »    PDF »
A new retinal photoreceptor should affect lighting practice.
S. M Berman (2008)
Lighting Research and Technology 40, 373-376
   PDF »
Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin.
B. Lin, A. Koizumi, N. Tanaka, S. Panda, and R. H. Masland (2008)
PNAS 105, 16009-16014
   Abstract »    Full Text »    PDF »
Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light.
G. C. Brainard, D. Sliney, J. P. Hanifin, G. Glickman, B. Byrne, J. M. Greeson, S. Jasser, E. Gerner, and M. D. Rollag (2008)
J Biol Rhythms 23, 379-386
   Abstract »    PDF »
Absence of Long-Wavelength Photic Potentiation of Murine Intrinsically Photosensitive Retinal Ganglion Cell Firing In Vitro.
K. Mawad and R. N. Van Gelder (2008)
J Biol Rhythms 23, 387-391
   Abstract »    PDF »
Expected and Unexpected Properties of Melanopsin Signaling.
H. M. Cooper and L. S. Mure (2008)
J Biol Rhythms 23, 392-393
   PDF »
Does Melanopsin Bistability Have Physiological Consequences?.
M. D. Rollag (2008)
J Biol Rhythms 23, 396-399
   PDF »
Therapeutic Actions of Melatonin in Cancer: Possible Mechanisms.
V. Srinivasan, D W. Spence, S. R. Pandi-Perumal, I. Trakht, and D. P. Cardinali (2008)
Integr Cancer Ther 7, 189-203
   Abstract »    PDF »
Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation.
J. H. White, M. Chiano, M. Wigglesworth, R. Geske, J. Riley, N. White, S. Hall, G. Zhu, F. Maurio, T. Savage, et al. (2008)
Hum. Mol. Genet. 17, 1890-1903
   Abstract »    Full Text »    PDF »
Photochemistry of retinal chromophore in mouse melanopsin.
M. T. Walker, R. L. Brown, T. W. Cronin, and P. R. Robinson (2008)
PNAS 105, 8861-8865
   Abstract »    Full Text »    PDF »
Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade.
D. M. Graham, K. Y. Wong, P. Shapiro, C. Frederick, K. Pattabiraman, and D. M. Berson (2008)
J Neurophysiol 99, 2522-2532
   Abstract »    Full Text »    PDF »
Molecular insights into human daily behavior.
S. A. Brown, D. Kunz, A. Dumas, P. O. Westermark, K. Vanselow, A. Tilmann-Wahnschaffe, H. Herzel, and A. Kramer (2008)
PNAS 105, 1602-1607
   Abstract »    Full Text »    PDF »
Wavelength-Dependent Modulation of Brain Responses to a Working Memory Task by Daytime Light Exposure.
G. Vandewalle, S. Gais, M. Schabus, E. Balteau, J. Carrier, A. Darsaud, V. Sterpenich, G. Albouy, D. J. Dijk, and P. Maquet (2007)
Cereb Cortex 17, 2788-2795
   Abstract »    Full Text »    PDF »
Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart).
S. S Pires, J. Shand, J. Bellingham, C. Arrese, M. Turton, S. Peirson, R. G Foster, and S. Halford (2007)
Proc R Soc B 274, 2791-2799
   Abstract »    Full Text »    PDF »
The Retina-Attached SCN Slice Preparation: An In Vitro Mammalian Circadian Visual System.
K. Y. Wong, D. M. Graham, and D. M. Berson (2007)
J Biol Rhythms 22, 400-410
   Abstract »    PDF »
Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo.
L. S. Mure, C. Rieux, S. Hattar, and H. M. Cooper (2007)
J Biol Rhythms 22, 411-424
   Abstract »    PDF »
Responses of Suprachiasmatic Nucleus Neurons to Light and Dark Adaptation: Relative Contributions of Melanopsin and Rod Cone Inputs.
E. Drouyer, C. Rieux, R. A. Hut, and H. M. Cooper (2007)
J. Neurosci. 27, 9623-9631
   Abstract »    Full Text »    PDF »
Synaptic Contact between Melanopsin-Containing Retinal Ganglion Cells and Rod Bipolar Cells.
J. Ostergaard, J. Hannibal, and J. Fahrenkrug (2007)
Invest. Ophthalmol. Vis. Sci. 48, 3812-3820
   Abstract »    Full Text »    PDF »
Synaptic influences on rat ganglion-cell photoreceptors.
K. Y. Wong, F. A. Dunn, D. M. Graham, and D. M. Berson (2007)
J. Physiol. 582, 279-296
   Abstract »    Full Text »    PDF »
2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity In Vitro and In Vivo.
S. Sekaran, G. S. Lall, K. L. Ralphs, A. J. Wolstenholme, R. J. Lucas, R. G. Foster, and M. W. Hankins (2007)
J. Neurosci. 27, 3981-3986
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Multiple Photoreceptors Contribute to Nonimage-forming Visual Functions Predominantly through Melanopsin-containing Retinal Ganglion Cells.
A.D. Guler, C.M. Altimus, J.L. Ecker, and S. Hattar (2007)
Cold Spring Harb Symp Quant Biol 72, 509-515
   Abstract »    PDF »
A Phosphoinositide Synthase Required for a Sustained Light Response.
T. Wang and C. Montell (2006)
J. Neurosci. 26, 12816-12825
   Abstract »    Full Text »    PDF »
An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells.
M. A. Contin, D. M. Verra, and M. E. Guido (2006)
FASEB J 20, 2648-2650
   Abstract »    Full Text »    PDF »
Dim Light Adaptation Attenuates Acute Melatonin Suppression in Humans.
S. A. Jasser, J. P. Hanifin, M. D. Rollag, and G. C. Brainard (2006)
J Biol Rhythms 21, 394-404
   Abstract »    PDF »
Chromophore regeneration: Melanopsin does its own thing.
R. J. Lucas (2006)
PNAS 103, 10153-10154
   Full Text »    PDF »
Inner retinal photoreception independent of the visual retinoid cycle.
D. C. Tu, L. A. Owens, L. Anderson, M. Golczak, S. E. Doyle, M. McCall, M. Menaker, K. Palczewski, and R. N. Van Gelder (2006)
PNAS 103, 10426-10431
   Abstract »    Full Text »    PDF »
Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system.
S. E. Doyle, A. M. Castrucci, M. McCall, I. Provencio, and M. Menaker (2006)
PNAS 103, 10432-10437
   Abstract »    Full Text »    PDF »
Violet and blue light blocking intraocular lenses: photoprotection versus photoreception.
M A Mainster (2006)
Br J Ophthalmol 90, 784-792
   Abstract »    Full Text »    PDF »
Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men.
M. Munch, S. Kobialka, R. Steiner, P. Oelhafen, A. Wirz-Justice, and C. Cajochen (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R1421-R1428
   Abstract »    Full Text »    PDF »
Immunohistochemical evidence of a melanopsin cone in human retina..
O. Dkhissi-Benyahya, C. Rieux, R. A. Hut, and H. M. Cooper (2006)
Invest. Ophthalmol. Vis. Sci. 47, 1636-1641
   Abstract »    Full Text »    PDF »
Mammalian G Proteins and Their Cell Type Specific Functions.
N. Wettschureck and S. Offermanns (2005)
Physiol Rev 85, 1159-1204
   Abstract »    Full Text »    PDF »
TRP channels in Drosophila photoreceptor cells.
C. Montell (2005)
J. Physiol. 567, 45-51
   Abstract »    Full Text »    PDF »
Photons, Clocks, and Consciousness.
G. C. Brainard and J. P. Hanifin (2005)
J Biol Rhythms 20, 314-325
   Abstract »    PDF »
Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
Y. Fu, H. Zhong, M.-H. H. Wang, D.-G. Luo, H.-W. Liao, H. Maeda, S. Hattar, L. J. Frishman, and K.-W. Yau (2005)
PNAS 102, 10339-10344
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882