Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5710): 690-696

Copyright © 2005 by the American Association for the Advancement of Science

Crystal Structure of a Complex Between the Catalytic and Regulatory (RI{alpha}) Subunits of PKA

Choel Kim,1 Nguyen-Huu Xuong,1,2 Susan S. Taylor1,3,4*

Abstract: The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RI{alpha}) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the catalytic subunit as a stable scaffold where Tyr247 in the G helix and Trp196 in the phosphorylated activation loop serve as anchor points for binding RI{alpha}. These residues compete with cAMP for the phosphate binding cassette in RI{alpha}. In contrast to the catalytic subunit, RI{alpha} undergoes major conformational changes when the complex is compared with cAMP-bound RI{alpha}. The inhibitor sequence docks to the active site, whereas the linker, also disordered in free RI{alpha}, folds across the extended interface. The ß barrel of cAMP binding domain A, which is the docking site for cAMP, remains largely intact in the complex, whereas the helical subdomain undergoes major reorganization.

1 Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.
2 Department of Physics and Biology, University of California, San Diego, CA 92093, USA.
3 Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA.
4 Department of Pharmacology, University of California, San Diego, CA 92093, USA.

* To whom correspondence should be addressed. E-mail: staylor{at}

Activating Hotspot L205R Mutation in PRKACA and Adrenal Cushing's Syndrome.
Y. Cao, M. He, Z. Gao, Y. Peng, Y. Li, L. Li, W. Zhou, X. Li, X. Zhong, Y. Lei, et al. (2014)
   Abstract »
Signaling through dynamic linkers as revealed by PKA.
M. Akimoto, R. Selvaratnam, E. T. McNicholl, G. Verma, S. S. Taylor, and G. Melacini (2013)
PNAS 110, 14231-14236
   Abstract »    Full Text »    PDF »
A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels.
M. C. Puljung and W. N. Zagotta (2013)
J. Biol. Chem. 288, 12944-12956
   Abstract »    Full Text »    PDF »
cAMP and Mitochondria.
F. Valsecchi, L. S. Ramos-Espiritu, J. Buck, L. R. Levin, and G. Manfredi (2013)
Physiology 28, 199-209
   Abstract »    Full Text »    PDF »
Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK.
J. Zheng, S. P. Yates, and Z. Jia (2012)
Phil Trans R Soc B 367, 2656-2668
   Abstract »    Full Text »    PDF »
Design principles underpinning the regulatory diversity of protein kinases.
K. Oruganty and N. Kannan (2012)
Phil Trans R Soc B 367, 2529-2539
   Abstract »    Full Text »    PDF »
Evolution of the eukaryotic protein kinases as dynamic molecular switches.
S. S. Taylor, M. M. Keshwani, J. M. Steichen, and A. P. Kornev (2012)
Phil Trans R Soc B 367, 2517-2528
   Abstract »    Full Text »    PDF »
Localization and quaternary structure of the PKA RI{beta} holoenzyme.
R. Ilouz, J. Bubis, J. Wu, Y. Y. Yim, M. S. Deal, A. P. Kornev, Y. Ma, D. K. Blumenthal, and S. S. Taylor (2012)
PNAS 109, 12443-12448
   Abstract »    Full Text »    PDF »
The Structure of the Full-Length Tetrameric PKA Regulatory RII{beta} Complex Reveals the Mechanism of Allosteric PKA Activation.
J. M. Elkins and S. Knapp (2012)
Science Signaling 5, pe21
   Abstract »    Full Text »    PDF »
Structure and Allostery of the PKA RII{beta} Tetrameric Holoenzyme.
P. Zhang, E. V. Smith-Nguyen, M. M. Keshwani, M. S. Deal, A. P. Kornev, and S. S. Taylor (2012)
Science 335, 712-716
   Abstract »    Full Text »    PDF »
Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains.
S. A. Mari, J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J. H. Morais-Cabral, and D. J. Muller (2011)
PNAS 108, 20802-20807
   Abstract »    Full Text »    PDF »
Prediction of peptides binding to the PKA RII{alpha} subunit using a hierarchical strategy.
T. Hou, Y. Li, and W. Wang (2011)
Bioinformatics 27, 1814-1821
   Abstract »    Full Text »    PDF »
Yeast 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Orthologs Pkh1-3 Differentially Regulate Phosphorylation of Protein Kinase A (PKA) and the Protein Kinase B (PKB)/S6K Ortholog Sch9.
K. Voordeckers, M. Kimpe, S. Haesendonckx, W. Louwet, M. Versele, and J. M. Thevelein (2011)
J. Biol. Chem. 286, 22017-22027
   Abstract »    Full Text »    PDF »
Ligand-binding domain subregions contributing to bimodal agonism in cyclic nucleotide-gated channels.
W.-F. Wong, K. S. C. Chan, M. S. Michaleski, A. Haesler, and E. C. Young (2011)
J. Gen. Physiol. 137, 591-603
   Abstract »    Full Text »    PDF »
The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays.
W. A. McLaughlin, T. Hou, S. S. Taylor, and W. Wang (2011)
Protein Eng. Des. Sel. 24, 333-339
   Abstract »    Full Text »    PDF »
Cyclic AMP Analog Blocks Kinase Activation by Stabilizing Inactive Conformation: Conformational Selection Highlights a New Concept in Allosteric Inhibitor Design.
S. Badireddy, G. Yunfeng, M. Ritchie, P. Akamine, J. Wu, C. W. Kim, S. S. Taylor, L. Qingsong, K. Swaminathan, and G. S. Anand (2011)
Mol. Cell. Proteomics 10, M110.004390
   Abstract »    Full Text »    PDF »
Phosphodiesterases Catalyze Hydrolysis of cAMP-bound to Regulatory Subunit of Protein Kinase A and Mediate Signal Termination.
B. S. Moorthy, Y. Gao, and G. S. Anand (2011)
Mol. Cell. Proteomics 10, M110.002295
   Abstract »    Full Text »    PDF »
Cyclic AMP- and (Rp)-cAMPS-induced Conformational Changes in a Complex of the Catalytic and Regulatory (RI{alpha}) Subunits of Cyclic AMP-dependent Protein Kinase.
G. S. Anand, S. Krishnamurthy, T. Bishnoi, A. Kornev, S. S. Taylor, and D. A. Johnson (2010)
Mol. Cell. Proteomics 9, 2225-2237
   Abstract »    Full Text »    PDF »
PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy.
C. H. Ha, J. Y. Kim, J. Zhao, W. Wang, B. S. Jhun, C. Wong, and Z. G. Jin (2010)
PNAS 107, 15467-15472
   Abstract »    Full Text »    PDF »
Communication between Tandem cAMP Binding Domains in the Regulatory Subunit of Protein Kinase A-I{alpha} as Revealed by Domain-silencing Mutations.
E. T. McNicholl, R. Das, S. SilDas, S. S. Taylor, and G. Melacini (2010)
J. Biol. Chem. 285, 15523-15537
   Abstract »    Full Text »    PDF »
Alternate protein kinase A activity identifies a unique population of stromal cells in adult bone.
K. M. Tsang, M. F. Starost, M. Nesterova, S. A. Boikos, T. Watkins, M. Q. Almeida, M. Harran, A. Li, M. T. Collins, C. Cheadle, et al. (2010)
PNAS 107, 8683-8688
   Abstract »    Full Text »    PDF »
p90 Ribosomal S6 Kinase 1 (RSK1) and the Catalytic Subunit of Protein Kinase A (PKA) Compete for Binding the Pseudosubstrate Region of PKAR1{alpha}: ROLE IN THE REGULATION OF PKA AND RSK1 ACTIVITIES.
X. Gao, D. Chaturvedi, and T. B. Patel (2010)
J. Biol. Chem. 285, 6970-6979
   Abstract »    Full Text »    PDF »
Sensing Domain Dynamics in Protein Kinase A-I{alpha} Complexes by Solution X-ray Scattering.
C. Y. Cheng, J. Yang, S. S. Taylor, and D. K. Blumenthal (2009)
J. Biol. Chem. 284, 35916-35925
   Abstract »    Full Text »    PDF »
T. Tsalkova, D. K. Blumenthal, F. C. Mei, M. A. White, and X. Cheng (2009)
J. Biol. Chem. 284, 23644-23651
   Abstract »    Full Text »    PDF »
The PKARI{alpha} Subunit of Protein Kinase A Modulates the Activation of p90RSK1 and Its Function.
D. Chaturvedi, M. S. Cohen, J. Taunton, and T. B. Patel (2009)
J. Biol. Chem. 284, 23670-23681
   Abstract »    Full Text »    PDF »
Mode of Action of cGMP-dependent Protein Kinase-specific Inhibitors Probed by Photoaffinity Cross-linking Mass Spectrometry.
M. W. H. Pinkse, D. T. S. Rijkers, W. R. Dostmann, and A. J. R. Heck (2009)
J. Biol. Chem. 284, 16354-16368
   Abstract »    Full Text »    PDF »
Selectivity in Enrichment of cAMP-dependent Protein Kinase Regulatory Subunits Type I and Type II and Their Interactors Using Modified cAMP Affinity Resins.
T. T. Aye, S. Mohammed, H. W. P. van den Toorn, T. A. B. van Veen, M. A. G. van der Heyden, A. Scholten, and A. J. R. Heck (2009)
Mol. Cell. Proteomics 8, 1016-1028
   Abstract »    Full Text »    PDF »
Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.
N. Popovych, S.-R. Tzeng, M. Tonelli, R. H. Ebright, and C. G. Kalodimos (2009)
PNAS 106, 6927-6932
   Abstract »    Full Text »    PDF »
Contribution of Non-catalytic Core Residues to Activity and Regulation in Protein Kinase A.
J. Yang, E. J. Kennedy, J. Wu, M. S. Deal, J. Pennypacker, G. Ghosh, and S. S. Taylor (2009)
J. Biol. Chem. 284, 6241-6248
   Abstract »    Full Text »    PDF »
Analysis of Conformational Changes during Activation of Protein Kinase Pak2 by Amide Hydrogen/Deuterium Exchange.
Y.-H. Hsu, D. A. Johnson, and J. A. Traugh (2008)
J. Biol. Chem. 283, 36397-36405
   Abstract »    Full Text »    PDF »
Mechanism of multi-site phosphorylation from a ROCK-I:RhoE complex structure.
D. Komander, R. Garg, P. T. C. Wan, A. J. Ridley, and D. Barford (2008)
EMBO J. 27, 3175-3185
   Abstract »    Full Text »    PDF »
Entropy-driven cAMP-dependent Allosteric Control of Inhibitory Interactions in Exchange Proteins Directly Activated by cAMP.
R. Das, M. T. Mazhab-Jafari, S. Chowdhury, S. SilDas, R. Selvaratnam, and G. Melacini (2008)
J. Biol. Chem. 283, 19691-19703
   Abstract »    Full Text »    PDF »
Protein Kinase A Effects of an Expressed PRKAR1A Mutation Associated with Aggressive Tumors.
E. Meoli, I. Bossis, L. Cazabat, M. Mavrakis, A. Horvath, S. Stergiopoulos, M. L. Shiferaw, G. Fumey, K. Perlemoine, M. Muchow, et al. (2008)
Cancer Res. 68, 3133-3141
   Abstract »    Full Text »    PDF »
Growth Factor Regulation of Estrogen Receptor Coregulator PELP1 Functions via Protein Kinase A Pathway.
J. K. Nagpal, S. Nair, D. Chakravarty, R. Rajhans, S. Pothana, D. W. Brann, R. R. Tekmal, and R. K. Vadlamudi (2008)
Mol. Cancer Res. 6, 851-861
   Abstract »    Full Text »    PDF »
Structural Dynamics in the Activation of Epac.
S. M. Harper, H. Wienk, R. W. Wechselberger, J. L. Bos, R. Boelens, and H. Rehmann (2008)
J. Biol. Chem. 283, 6501-6508
   Abstract »    Full Text »    PDF »
Large Deletions of the PRKAR1A Gene in Carney Complex.
A. Horvath, I. Bossis, C. Giatzakis, E. Levine, F. Weinberg, E. Meoli, A. Robinson-White, J. Siegel, P. Soni, L. Groussin, et al. (2008)
Clin. Cancer Res. 14, 388-395
   Abstract »    Full Text »    PDF »
Identification of Functionally Distinct Regions That Mediate Biological Activity of the Protein Kinase A Homolog Tpk2.
E. J. Kennedy, G. Ghosh, and L. Pillus (2008)
J. Biol. Chem. 283, 1084-1093
   Abstract »    Full Text »    PDF »
Conformational Analysis of Epac Activation Using Amide Hydrogen/Deuterium Exchange Mass Spectrometry.
M. Brock, F. Fan, F. C. Mei, S. Li, C. Gessner, V. L. Woods Jr., and X. Cheng (2007)
J. Biol. Chem. 282, 32256-32263
   Abstract »    Full Text »    PDF »
PKA Type II{alpha} Holoenzyme Reveals a Combinatorial Strategy for Isoform Diversity.
J. Wu, S. H. J. Brown, S. von Daake, and S. S. Taylor (2007)
Science 318, 274-279
   Abstract »    Full Text »    PDF »
Divergence of Protein Kinase A Catalytic Subunits in Cryptococcus neoformans and Cryptococcus gattii Illustrates Evolutionary Reconfiguration of a Signaling Cascade.
J. K. Hicks and J. Heitman (2007)
Eukaryot. Cell 6, 413-420
   Abstract »    Full Text »    PDF »
A Model for Agonism and Antagonism in an Ancient and Ubiquitous cAMP-binding Domain.
R. Das and G. Melacini (2007)
J. Biol. Chem. 282, 581-593
   Abstract »    Full Text »    PDF »
cAMP activation of PKA defines an ancient signaling mechanism.
R. Das, V. Esposito, M. Abu-Abed, G. S. Anand, S. S. Taylor, and G. Melacini (2007)
PNAS 104, 93-98
   Abstract »    Full Text »    PDF »
The Role of the Phospho-CDK2/Cyclin A Recruitment Site in Substrate Recognition.
K.-Y. Cheng, M. E. M. Noble, V. Skamnaki, N. R. Brown, E. D. Lowe, L. Kontogiannis, K. Shen, P. A. Cole, G. Siligardi, and L. N. Johnson (2006)
J. Biol. Chem. 281, 23167-23179
   Abstract »    Full Text »    PDF »
Epac1 and cAMP-dependent Protein Kinase Holoenzyme Have Similar cAMP Affinity, but Their cAMP Domains Have Distinct Structural Features and Cyclic Nucleotide Recognition.
K. K. Dao, K. Teigen, R. Kopperud, E. Hodneland, F. Schwede, A. E. Christensen, A. Martinez, and S. O. Doskeland (2006)
J. Biol. Chem. 281, 21500-21511
   Abstract »    Full Text »    PDF »
Subcellular Localization and Biological Actions of Activated RSK1 Are Determined by Its Interactions with Subunits of Cyclic AMP-Dependent Protein Kinase.
D. Chaturvedi, H. M. Poppleton, T. Stringfield, A. Barbier, and T. B. Patel (2006)
Mol. Cell. Biol. 26, 4586-4600
   Abstract »    Full Text »    PDF »
Monitoring of cAMP Synthesis and Degradation in Living Cells.
V. O. Nikolaev and M. J. Lohse (2006)
Physiology 21, 86-92
   Abstract »    Full Text »    PDF »
TRPM7 Channel Is Regulated by Magnesium Nucleotides via its Kinase Domain.
P. Demeuse, R. Penner, and A. Fleig (2006)
J. Gen. Physiol. 127, 421-434
   Abstract »    Full Text »    PDF »
The Conformationally Dynamic C Helix of the RI{alpha} Subunit of Protein Kinase A Mediates Isoform-specific Domain Reorganization upon C Subunit Binding.
D. Vigil, D. K. Blumenthal, S. S. Taylor, and J. Trewhella (2005)
J. Biol. Chem. 280, 35521-35527
   Abstract »    Full Text »    PDF »
Variable Control of Ets-1 DNA Binding by Multiple Phosphates in an Unstructured Region.
M. A. Pufall, G. M. Lee, M. L. Nelson, H.-S. Kang, A. Velyvis, L. E. Kay, L. P. McIntosh, and B. J. Graves (2005)
Science 309, 142-145
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882