Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 307 (5710): 724-727

Copyright © 2005 by the American Association for the Advancement of Science

Dynamic Complex Formation During the Yeast Cell Cycle

Ulrik de Lichtenberg,1* Lars Juhl Jensen,2* Søren Brunak,1 Peer Bork2,3{dagger}

Abstract: To analyze the dynamics of protein complexes during the yeast cell cycle, we integrated data on protein interactions and gene expression. The resulting time-dependent interaction network places both periodically and constitutively expressed proteins in a temporal cell cycle context, thereby revealing previously unknown components and modules. We discovered that most complexes consist of both periodically and constitutively expressed subunits, which suggests that the former control complex activity by a mechanism of just-in-time assembly. Consistent with this, we show that additional regulation through targeted degradation and phosphorylation by Cdc28p (Cdk1) specifically affects the periodically expressed proteins.

1 Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark.
2 European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
3 Max-Delbrück-Centre for Molecular Medicine, D-13092 Berlin, Germany.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: bork{at}embl.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation.
A. Csikasz-Nagy, O. Kapuy, A. Toth, C. Pal, L. J. Jensen, F. Uhlmann, J. J. Tyson, and B. Novak (2014)
Mol Syst Biol 5, 236
   Abstract »    Full Text »    PDF »
Tissue specificity and the human protein interaction network.
A. Bossi and B. Lehner (2014)
Mol Syst Biol 5, 260
   Abstract »    Full Text »    PDF »
Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis.
S. D. Hooper, S. Boue, R. Krause, L. J. Jensen, C. E. Mason, M. Ghanim, K. P. White, E. E. Furlong, and P. Bork (2014)
Mol Syst Biol 3, 72
   Abstract »    Full Text »    PDF »
Network-based prediction of protein function.
R. Sharan, I. Ulitsky, and R. Shamir (2014)
Mol Syst Biol 3, 88
   Abstract »    Full Text »    PDF »
Revealing static and dynamic modular architecture of the eukaryotic protein interaction network.
K. Komurov and M. White (2014)
Mol Syst Biol 3, 110
   Abstract »    Full Text »    PDF »
Differential network biology.
T. Ideker and N. J. Krogan (2014)
Mol Syst Biol 8, 565
   Abstract »    Full Text »    PDF »
Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium.
V. van Noort, J. Seebacher, S. Bader, S. Mohammed, I. Vonkova, M. J. Betts, S. Kuhner, R. Kumar, T. Maier, M. O'Flaherty, et al. (2014)
Mol Syst Biol 8, 571
   Abstract »    Full Text »    PDF »
Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.
A. Ori, N. Banterle, M. Iskar, A. Andres-Pons, C. Escher, H. Khanh Bui, L. Sparks, V. Solis-Mezarino, O. Rinner, P. Bork, et al. (2014)
Mol Syst Biol 9, 648
   Abstract »    Full Text »    PDF »
Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
B. Chen, W. Fan, J. Liu, and F.-X. Wu (2014)
Brief Bioinform 15, 177-194
   Abstract »    Full Text »    PDF »
Interactions Affected by Arginine Methylation in the Yeast Protein-Protein Interaction Network.
M. A. Erce, D. Abeygunawardena, J. K. K. Low, G. Hart-Smith, and M. R. Wilkins (2013)
Mol. Cell. Proteomics 12, 3184-3198
   Abstract »    Full Text »    PDF »
Dissection of Cdk1-cyclin complexes in vivo.
P. H. Ear, M. J. Booth, D. Abd-Rabbo, J. Kowarzyk Moreno, C. Hall, D. Chen, J. Vogel, and S. W. Michnick (2013)
PNAS 110, 15716-15721
   Abstract »    Full Text »    PDF »
An integrated approach to identify causal network modules of complex diseases with application to colorectal cancer.
Z. Wen, Z.-P. Liu, Z. Liu, Y. Zhang, and L. Chen (2013)
JAMIA 20, 659-667
   Abstract »    Full Text »    PDF »
A context-sensitive framework for the analysis of human signalling pathways in molecular interaction networks.
A. Lan, M. Ziv-Ukelson, and E. Yeger-Lotem (2013)
Bioinformatics 29, i210-i216
   Abstract »    Full Text »    PDF »
Predicting Physical Interactions between Protein Complexes.
T. Clancy, E. A. Rodland, S. Nygard, and E. Hovig (2013)
Mol. Cell. Proteomics 12, 1723-1734
   Abstract »    Full Text »    PDF »
Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis.
Q. K. Beg, M. Zampieri, N. Klitgord, S. B. Collins, C. Altafini, M. H. Serres, and D. Segre (2012)
Nucleic Acids Res. 40, 7132-7149
   Abstract »    Full Text »    PDF »
Enabling Computational Proteomics by Public and Local Data Management Systems.
K. Helsens and L. Martens (2012)
Circ Cardiovasc Genet 5, 266
   Full Text »    PDF »
How to cluster gene expression dynamics in response to environmental signals.
Y. Wang, M. Xu, Z. Wang, M. Tao, J. Zhu, L. Wang, R. Li, S. A. Berceli, and R. Wu (2012)
Brief Bioinform 13, 162-174
   Abstract »    Full Text »    PDF »
Phosphosite Mapping of P-type Plasma Membrane H+-ATPase in Homologous and Heterologous Environments.
E. L. Rudashevskaya, J. Ye, O. N. Jensen, A. T. Fuglsang, and M. G. Palmgren (2012)
J. Biol. Chem. 287, 4904-4913
   Abstract »    Full Text »    PDF »
Construction of a Large Extracellular Protein Interaction Network and Its Resolution by Spatiotemporal Expression Profiling.
S. Martin, C. Sollner, V. Charoensawan, B. Adryan, B. Thisse, C. Thisse, S. Teichmann, and G. J. Wright (2010)
Mol. Cell. Proteomics 9, 2654-2665
   Abstract »    Full Text »    PDF »
Protein evolution in yeast transcription factor subnetworks.
Y. Wang, E. A. Franzosa, X.-S. Zhang, and Y. Xia (2010)
Nucleic Acids Res. 38, 5959-5969
   Abstract »    Full Text »    PDF »
Reverse engineering dynamic temporal models of biological processes and their relationships.
N. Ramakrishnan, S. Tadepalli, L. T. Watson, R. F. Helm, M. Antoniotti, and B. Mishra (2010)
PNAS 107, 12511-12516
   Abstract »    Full Text »    PDF »
Functional Modules in the Arabidopsis Core Cell Cycle Binary Protein-Protein Interaction Network.
J. Boruc, H. Van den Daele, J. Hollunder, S. Rombauts, E. Mylle, P. Hilson, D. Inze, L. De Veylder, and E. Russinova (2010)
PLANT CELL 22, 1264-1280
   Abstract »    Full Text »    PDF »
Toward the dynamic interactome: it's about time.
T. M. Przytycka, M. Singh, and D. K. Slonim (2010)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Proteome Organization in a Genome-Reduced Bacterium.
S. Kuhner, V. van Noort, M. J. Betts, A. Leo-Macias, C. Batisse, M. Rode, T. Yamada, T. Maier, S. Bader, P. Beltran-Alvarez, et al. (2009)
Science 326, 1235-1240
   Abstract »    Full Text »    PDF »
POLAR MAPPER: a computational tool for integrated visualization of protein interaction networks and mRNA expression data.
J. P. Goncalves, M. Graos, and A. X.C.N. Valente (2009)
J R Soc Interface 6, 881-896
   Abstract »    Full Text »    PDF »
Conserved principles of mammalian transcriptional regulation revealed by RNA half-life.
C. C. Friedel, L. Dolken, Z. Ruzsics, U. H. Koszinowski, and R. Zimmer (2009)
Nucleic Acids Res. 37, e115
   Abstract »    Full Text »    PDF »
Transcriptional Analysis of the Candida albicans Cell Cycle.
P. Cote, H. Hogues, and M. Whiteway (2009)
Mol. Biol. Cell 20, 3363-3373
   Abstract »    Full Text »    PDF »
Computational systems biology of the cell cycle.
A. Csikasz-Nagy (2009)
Brief Bioinform 10, 424-434
   Abstract »    Full Text »    PDF »
Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation.
R. Narayanaswamy, M. Levy, M. Tsechansky, G. M. Stovall, J. D. O'Connell, J. Mirrielees, A. D. Ellington, and E. M. Marcotte (2009)
PNAS 106, 10147-10152
   Abstract »    Full Text »    PDF »
Functional organization of the yeast proteome by a yeast interactome map.
A. X. C. N. Valente, S. B. Roberts, G. A. Buck, and Y. Gao (2009)
PNAS 106, 1490-1495
   Abstract »    Full Text »    PDF »
Challenges and Rewards of Interaction Proteomics.
S. J. Wodak, S. Pu, J. Vlasblom, and B. Seraphin (2009)
Mol. Cell. Proteomics 8, 3-18
   Abstract »    Full Text »    PDF »
STRING 8--a global view on proteins and their functional interactions in 630 organisms.
L. J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks, P. Julien, A. Roth, M. Simonovic, et al. (2009)
Nucleic Acids Res. 37, D412-D416
   Abstract »    Full Text »    PDF »
Physical protein-protein interactions predicted from microarrays.
T.-t. Soong, K. O. Wrzeszczynski, and B. Rost (2008)
Bioinformatics 24, 2608-2614
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: Not Comparable, But Complementary.
L. J. Jensen and P. Bork (2008)
Science 322, 56-57
   Abstract »    Full Text »    PDF »
VistaClara: an expression browser plug-in for Cytoscape.
R. Kincaid, A. Kuchinsky, and M. Creech (2008)
Bioinformatics 24, 2112-2114
   Abstract »    Full Text »    PDF »
The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast.
G. Musso, M. Costanzo, M. Huangfu, A. M. Smith, J. Paw, B.-J. San Luis, C. Boone, G. Giaever, C. Nislow, A. Emili, et al. (2008)
Genome Res. 18, 1092-1099
   Abstract »    Full Text »    PDF »
Plk1- and {beta}-TrCP-dependent degradation of Bora controls mitotic progression.
A. Seki, J. A. Coppinger, H. Du, C.-Y. Jang, J. R. Yates III, and G. Fang (2008)
J. Cell Biol. 181, 65-78
   Abstract »    Full Text »    PDF »
Genome-wide inference of protein interaction sites: lessons from the yeast high-quality negative protein-protein interaction dataset.
J. Guo, X. Wu, D.-Y. Zhang, and K. Lin (2008)
Nucleic Acids Res. 36, 2002-2011
   Abstract »    Full Text »    PDF »
High-resolution timing of cell cycle-regulated gene expression.
M. Rowicka, A. Kudlicki, B. P. Tu, and Z. Otwinowski (2007)
PNAS 104, 16892-16897
   Abstract »    Full Text »    PDF »
LICORN: learning cooperative regulation networks from gene expression data.
M. Elati, P. Neuvial, M. Bolotin-Fukuhara, E. Barillot, F. Radvanyi, and C. Rouveirol (2007)
Bioinformatics 23, 2407-2414
   Abstract »    Full Text »    PDF »
Thematic review series: Systems Biology Approaches to Metabolic and Cardiovascular Disorders. Multi-organ whole-genome measurements and reverse engineering to uncover gene networks underlying complex traits.
J. Tegner, J. Skogsberg, and J. Bjorkegren (2007)
J. Lipid Res. 48, 267-277
   Abstract »    Full Text »    PDF »
Transcriptional regulation of protein complexes within and across species.
K. Tan, T. Shlomi, H. Feizi, T. Ideker, and R. Sharan (2007)
PNAS 104, 1283-1288
   Abstract »    Full Text »    PDF »
CellCircuits: a database of protein network models.
H. C. Mak, M. Daly, B. Gruebel, and T. Ideker (2007)
Nucleic Acids Res. 35, D538-D545
   Abstract »    Full Text »    PDF »
Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights.
P. M. Kim, L. J. Lu, Y. Xia, and M. B. Gerstein (2006)
Science 314, 1938-1941
   Abstract »    Full Text »    PDF »
A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock.
M.-L. Dequeant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, and O. Pourquie (2006)
Science 314, 1595-1598
   Abstract »    Full Text »    PDF »
A Network-based Analysis of Polyanion-binding Proteins Utilizing Yeast Protein Arrays.
N. Salamat-Miller, J. Fang, C. W. Seidel, A. M. Smalter, Y. Assenov, M. Albrecht, and C. R. Middaugh (2006)
Mol. Cell. Proteomics 5, 2263-2278
   Abstract »    Full Text »    PDF »
Genome-wide functional analysis of human cell-cycle regulators.
M. Mukherji, R. Bell, L. Supekova, Y. Wang, A. P. Orth, S. Batalov, L. Miraglia, D. Huesken, J. Lange, C. Martin, et al. (2006)
PNAS 103, 14819-14824
   Abstract »    Full Text »    PDF »
Global topological features of cancer proteins in the human interactome.
P. F. Jonsson and P. A. Bates (2006)
Bioinformatics 22, 2291-2297
   Abstract »    Full Text »    PDF »
The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle..
T. Pramila, W. Wu, S. Miles, W. S. Noble, and L. L. Breeden (2006)
Genes & Dev. 20, 2266-2278
   Abstract »    Full Text »    PDF »
HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture.
J. Wong and G. Fang (2006)
J. Cell Biol. 173, 879-891
   Abstract »    Full Text »    PDF »
Cell Wall Assembly in Saccharomyces cerevisiae.
G. Lesage and H. Bussey (2006)
Microbiol. Mol. Biol. Rev. 70, 317-343
   Abstract »    Full Text »    PDF »
Modelling in molecular biology: describing transcription regulatory networks at different scales.
T. Schlitt and A. Brazma (2006)
Phil Trans R Soc B 361, 483-494
   Abstract »    Full Text »    PDF »
The origins and evolution of functional modules: lessons from protein complexes.
J. B. Pereira-Leal, E. D. Levy, and S. A. Teichmann (2006)
Phil Trans R Soc B 361, 507-517
   Abstract »    Full Text »    PDF »
Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae.
X. Yu, J. Lin, T. Masuda, N. Esumi, D. J. Zack, and J. Qian (2006)
Nucleic Acids Res. 34, 917-927
   Abstract »    Full Text »    PDF »
Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations..
X. Wu, L. Zhu, J. Guo, D.-Y. Zhang, and K. Lin (2006)
Nucleic Acids Res. 34, 2137-2150
   Abstract »    Full Text »    PDF »
Yeast Protein Interactome topology provides framework for coordinated-functionality..
A. X. C. N. Valente and M. E. Cusick (2006)
Nucleic Acids Res. 34, 2812-2819
   Abstract »    Full Text »    PDF »
Ace2p contributes to fission yeast septin ring assembly by regulating mid2+ expression.
C. S. Petit, S. Mehta, R. H. Roberts, and K. L. Gould (2005)
J. Cell Sci. 118, 5731-5742
   Abstract »    Full Text »    PDF »
Medusa: a simple tool for interaction graph analysis.
S. D. Hooper and P. Bork (2005)
Bioinformatics 21, 4432-4433
   Abstract »    Full Text »    PDF »
Expression Clustering Reveals Detailed Co-expression Patterns of Functionally Related Proteins during B Cell Differentiation: A Proteomic Study Using a Combination of One-Dimensional Gel Electrophoresis, LC-MS/MS, and Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC).
E. P. Romijn, C. Christis, M. Wieffer, J. W. Gouw, A. Fullaondo, P. van der Sluijs, I. Braakman, and A. J. R. Heck (2005)
Mol. Cell. Proteomics 4, 1297-1310
   Abstract »    Full Text »    PDF »
Metabolic Engineering in the -omics Era: Elucidating and Modulating Regulatory Networks.
G. N. Vemuri and A. A. Aristidou (2005)
Microbiol. Mol. Biol. Rev. 69, 197-216
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882