Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 307 (5711): 929-932

Copyright © 2005 by the American Association for the Advancement of Science

Mammalian SAD Kinases Are Required for Neuronal Polarization

Masashi Kishi,1* Y. Albert Pan,1,2* Justin Gage Crump,3{dagger} Joshua R. Sanes1,2{ddagger}

Abstract: Electrical activity in neurons is generally initiated in dendritic processes then propagated along axons to synapses, where it is passed to other neurons. Major structural features of neurons—their dendrites and axons—are thus related to their fundamental functions: the receipt and transmission of information. The acquisition of these distinct properties by dendrites and axons, called polarization, is a critical step in neuronal differentiation. We show here that SAD-A and SAD-B, mammalian orthologs of a kinase needed for presynaptic differentiation in Caenorhabditis elegans, are required for neuronal polarization. These kinases will provide entry points for unraveling signaling mechanisms that polarize neurons.

1 Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, MO 63110, USA.
2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
3 Department of Anatomy, University of California, San Francisco, CA 94143, USA.

* These authors contributed equally to this work.

{dagger} Present address: Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.

{ddagger} To whom correspondence should be addressed. E-mail: sanesj{at}mcb.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology.
W. J. Buchser, T. I. Slepak, O. Gutierrez-Arenas, J. L. Bixby, and V. P. Lemmon (2014)
Mol Syst Biol 6, 391
   Abstract »    Full Text »    PDF »
SAD kinases control the maturation of nerve terminals in the mammalian peripheral and central nervous systems.
B. N. Lilley, A. Krishnaswamy, Z. Wang, M. Kishi, E. Frank, and J. R. Sanes (2014)
PNAS 111, 1138-1143
   Abstract »    Full Text »    PDF »
Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons.
W. Huang, L. She, X.-y. Chang, R.-r. Yang, L. Wang, H.-b. Ji, J.-w. Jiao, and M.-m. Poo (2014)
PNAS 111, 469-474
   Abstract »    Full Text »    PDF »
The regulation and function of the NUAK family.
X. Sun, L. Gao, H.-Y. Chien, W.-C. Li, and J. Zhao (2013)
J. Mol. Endocrinol. 51, R15-R22
   Abstract »    Full Text »    PDF »
SAD-A kinase controls islet {beta}-cell size and function as a mediator of mTORC1 signaling.
J. Nie, X. Liu, B. N. Lilley, H. Zhang, Y. A. Pan, S. R. Kimball, J. Zhang, W. Zhang, L. Wang, L. S. Jefferson, et al. (2013)
PNAS 110, 13857-13862
   Abstract »    Full Text »    PDF »
SAD-A Potentiates Glucose-Stimulated Insulin Secretion as a Mediator of Glucagon-Like Peptide 1 Response in Pancreatic {beta} Cells.
J. Nie, B. N. Lilley, Y. A. Pan, O. Faruque, X. Liu, W. Zhang, J. R. Sanes, X. Han, and Y. Shi (2013)
Mol. Cell. Biol. 33, 2527-2534
   Abstract »    Full Text »    PDF »
Genetic variation may modify ovarian reserve in female childhood cancer survivors.
W. van Dorp, M. M. van den Heuvel-Eibrink, L. Stolk, R. Pieters, A. G. Uitterlinden, J. A. Visser, and J. S. E. Laven (2013)
Hum. Reprod. 28, 1069-1076
   Abstract »    Full Text »    PDF »
Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival.
T. Zurashvili, L. Cordon-Barris, G. Ruiz-Babot, X. Zhou, J. M. Lizcano, N. Gomez, L. Gimenez-Llort, and J. R. Bayascas (2013)
Mol. Cell. Biol. 33, 1027-1040
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans PIG-1/MELK Acts in a Conserved PAR-4/LKB1 Polarity Pathway to Promote Asymmetric Neuroblast Divisions.
S.-C. Chien, E.-M. Brinkmann, J. Teuliere, and G. Garriga (2013)
Genetics 193, 897-909
   Abstract »    Full Text »    PDF »
A dominant mutation in mec-7/{beta}-tubulin affects axon development and regeneration in Caenorhabditis elegans neurons.
L. Kirszenblat, B. Neumann, S. Coakley, and M. A. Hilliard (2013)
Mol. Biol. Cell 24, 285-296
   Abstract »    Full Text »    PDF »
Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders.
B. J. O'Roak, L. Vives, W. Fu, J. D. Egertson, I. B. Stanaway, I. G. Phelps, G. Carvill, A. Kumar, C. Lee, K. Ankenman, et al. (2012)
Science 338, 1619-1622
   Abstract »    Full Text »    PDF »
Brain-selective Kinase 2 (BRSK2) Phosphorylation on PCTAIRE1 Negatively Regulates Glucose-stimulated Insulin Secretion in Pancreatic {beta}-Cells.
X.-Y. Chen, X.-T. Gu, H. Saiyin, B. Wan, Y.-J. Zhang, J. Li, Y.-L. Wang, R. Gao, Y.-F. Wang, W.-P. Dong, et al. (2012)
J. Biol. Chem. 287, 30368-30375
   Abstract »    Full Text »    PDF »
Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic {beta}-Cells.
J. Nie, C. Sun, O. Faruque, G. Ye, J. Li, Q. Liang, Z. Chang, W. Yang, X. Han, and Y. Shi (2012)
J. Biol. Chem. 287, 26435-26444
   Abstract »    Full Text »    PDF »
Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis.
Y. Ye, I.-J. Lee, K. W. Runge, and J.-Q. Wu (2012)
Mol. Biol. Cell 23, 1181-1195
   Abstract »    Full Text »    PDF »
The tumor suppressor kinase LKB1: lessons from mouse models.
S. Ollila and T. P. Makela (2011)
J Mol Cell Biol 3, 330-340
   Abstract »    Full Text »    PDF »
Self-amplifying autocrine actions of BDNF in axon development.
P.-L. Cheng, A.-H. Song, Y.-H. Wong, S. Wang, X. Zhang, and M.-M. Poo (2011)
PNAS 108, 18430-18435
   Abstract »    Full Text »    PDF »
Cdk5-Mediated Phosphorylation of Axin Directs Axon Formation during Cerebral Cortex Development.
W.-Q. Fang, J. P. K. Ip, R. Li, Y. P. Ng, S.-C. Lin, Y. Chen, A. K. Y. Fu, and N. Y. Ip (2011)
J. Neurosci. 31, 13613-13624
   Abstract »    Full Text »    PDF »
Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain.
Y. Hida, M. Fukaya, A. Hagiwara, M. Deguchi-Tawarada, T. Yoshioka, I. Kitajima, E. Inoue, M. Watanabe, and T. Ohtsuka (2011)
J. Biochem. 149, 693-700
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress.
T. Williams, J. Courchet, B. Viollet, J. E. Brenman, and F. Polleux (2011)
PNAS 108, 5849-5854
   Abstract »    Full Text »    PDF »
RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis.
G. Sun, R. Reynolds, I. Leclerc, and G. A. Rutter (2011)
Dis. Model. Mech. 4, 193-202
   Abstract »    Full Text »    PDF »
Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice.
M. Claret, M. A. Smith, C. Knauf, H. Al-Qassab, A. Woods, A. Heslegrave, K. Piipari, J. J. Emmanuel, A. Colom, P. Valet, et al. (2011)
Diabetes 60, 735-745
   Abstract »    Full Text »    PDF »
Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo.
S. Baas, M. Sharrow, V. Kotu, M. Middleton, K. Nguyen, H. Flanagan-Steet, K. Aoki, and M. Tiemeyer (2011)
Development 138, 553-563
   Abstract »    Full Text »    PDF »
A{beta} Oligomers Cause Localized Ca2+ Elevation, Missorting of Endogenous Tau into Dendrites, Tau Phosphorylation, and Destruction of Microtubules and Spines.
H. Zempel, E. Thies, E. Mandelkow, and E.-M. Mandelkow (2010)
J. Neurosci. 30, 11938-11950
   Abstract »    Full Text »    PDF »
Human studies on genetics of the age at natural menopause: a systematic review.
M. Voorhuis, N. C. Onland-Moret, Y. T. van der Schouw, B. C. J. M. Fauser, and F. J. Broekmans (2010)
Hum. Reprod. Update 16, 364-377
   Abstract »    Full Text »    PDF »
A FOXO-Pak1 transcriptional pathway controls neuronal polarity.
L. de la Torre-Ubieta, B. Gaudilliere, Y. Yang, Y. Ikeuchi, T. Yamada, S. DiBacco, J. Stegmuller, U. Schuller, D. A. Salih, D. Rowitch, et al. (2010)
Genes & Dev. 24, 799-813
   Abstract »    Full Text »    PDF »
Protein Phosphatase 2A Facilitates Axonogenesis by Dephosphorylating CRMP2.
L.-Q. Zhu, H.-Y. Zheng, C.-X. Peng, D. Liu, H.-L. Li, Q. Wang, and J.-Z. Wang (2010)
J. Neurosci. 30, 3839-3848
   Abstract »    Full Text »    PDF »
Dissecting the Factors Involved in the Locomotion Mode of Neuronal Migration in the Developing Cerebral Cortex.
Y. V. Nishimura, K. Sekine, K. Chihama, K. Nakajima, M. Hoshino, Y.-i. Nabeshima, and T. Kawauchi (2010)
J. Biol. Chem. 285, 5878-5887
   Abstract »    Full Text »    PDF »
Differential requirements for STRAD in LKB1-dependent functions in C. elegans.
P. Narbonne, V. Hyenne, S. Li, J.-C. Labbe, and R. Roy (2010)
Development 137, 661-670
   Abstract »    Full Text »    PDF »
Local and Long-Range Reciprocal Regulation of cAMP and cGMP in Axon/Dendrite Formation.
M. Shelly, B. K. Lim, L. Cancedda, S. C. Heilshorn, H. Gao, and M.-m. Poo (2010)
Science 327, 547-552
   Abstract »    Full Text »    PDF »
Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity.
M. Muller, D. Lutter, and A. W. Puschel (2010)
J. Cell Sci. 123, 286-294
   Abstract »    Full Text »    PDF »
C. elegans STRAD{alpha} and SAD cooperatively regulate neuronal polarity and synaptic organization.
J. S. M. Kim, W. Hung, P. Narbonne, R. Roy, and M. Zhen (2010)
Development 137, 93-102
   Abstract »    Full Text »    PDF »
LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism.
M. Jansen, J. P. ten Klooster, G. J. Offerhaus, and H. Clevers (2009)
Physiol Rev 89, 777-798
   Abstract »    Full Text »    PDF »
The p21-Activated Kinase Is Required for Neuronal Migration in the Cerebral Cortex.
F. Causeret, M. Terao, T. Jacobs, Y. V. Nishimura, Y. Yanagawa, K. Obata, M. Hoshino, and M. Nikolic (2009)
Cereb Cortex 19, 861-875
   Abstract »    Full Text »    PDF »
The molecular mechanisms that underlie the tumor suppressor function of LKB1.
D. Fan, C. Ma, and H. Zhang (2009)
Acta Biochim Biophys Sin 41, 97-107
   Abstract »    Full Text »    PDF »
Proline-directed Pseudo-phosphorylation at AT8 and PHF1 Epitopes Induces a Compaction of the Paperclip Folding of Tau and Generates a Pathological (MC-1) Conformation.
S. Jeganathan, A. Hascher, S. Chinnathambi, J. Biernat, E.-M. Mandelkow, and E. Mandelkow (2008)
J. Biol. Chem. 283, 32066-32076
   Abstract »    Full Text »    PDF »
The Tsc1-Tsc2 complex influences neuronal polarity by modulating TORC1 activity and SAD levels.
J. Wildonger, L. Y. Jan, and Y. N. Jan (2008)
Genes & Dev. 22, 2447-2453
   Abstract »    Full Text »    PDF »
Tuberous sclerosis complex proteins control axon formation.
Y.-J. Choi, A. Di Nardo, I. Kramvis, L. Meikle, D. J. Kwiatkowski, M. Sahin, and X. He (2008)
Genes & Dev. 22, 2485-2495
   Abstract »    Full Text »    PDF »
Both the Establishment and Maintenance of Neuronal Polarity Require the Activity of Protein Kinase D in the Golgi Apparatus.
D.-M. Yin, Y.-H. Huang, Y.-B. Zhu, and Y. Wang (2008)
J. Neurosci. 28, 8832-8843
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase (GSK) 3{beta} Directly Phosphorylates Serine 212 in the Regulatory Loop and Inhibits Microtubule Affinity-regulating Kinase (MARK) 2.
T. Timm, K. Balusamy, X. Li, J. Biernat, E. Mandelkow, and E.-M. Mandelkow (2008)
J. Biol. Chem. 283, 18873-18882
   Abstract »    Full Text »    PDF »
Investigating the Regulation of Brain-specific Kinases 1 and 2 by Phosphorylation.
N. J. Bright, D. Carling, and C. Thornton (2008)
J. Biol. Chem. 283, 14946-14954
   Abstract »    Full Text »    PDF »
Accurate Balance of the Polarity Kinase MARK2/Par-1 Is Required for Proper Cortical Neuronal Migration.
T. Sapir, S. Sapoznik, T. Levy, D. Finkelshtein, A. Shmueli, T. Timm, E.-M. Mandelkow, and O. Reiner (2008)
J. Neurosci. 28, 5710-5720
   Abstract »    Full Text »    PDF »
Microtubule stabilization specifies initial neuronal polarization.
H. Witte, D. Neukirchen, and F. Bradke (2008)
J. Cell Biol. 180, 619-632
   Abstract »    Full Text »    PDF »
Neurabin-I Is Phosphorylated by Cdk5: Implications for Neuronal Morphogenesis and Cortical Migration.
F. Causeret, T. Jacobs, M. Terao, O. Heath, M. Hoshino, and M. Nikolic (2007)
Mol. Biol. Cell 18, 4327-4342
   Abstract »    Full Text »    PDF »
LKB1 Regulates Neuronal Migration and Neuronal Differentiation in the Developing Neocortex through Centrosomal Positioning.
N. Asada, K. Sanada, and Y. Fukada (2007)
J. Neurosci. 27, 11769-11775
   Abstract »    Full Text »    PDF »
Suppression of Tubulin Polymerization by the LKB1-Microtubule-associated Protein/Microtubule Affinity-regulating Kinase Signaling.
Y. Kojima, H. Miyoshi, H. C. Clevers, M. Oshima, M. Aoki, and M. M. Taketo (2007)
J. Biol. Chem. 282, 23532-23540
   Abstract »    Full Text »    PDF »
Localized Activation of p21-Activated Kinase Controls Neuronal Polarity and Morphology.
T. Jacobs, F. Causeret, Y. V. Nishimura, M. Terao, A. Norman, M. Hoshino, and M. Nikolic (2007)
J. Neurosci. 27, 8604-8615
   Abstract »    Full Text »    PDF »
Tau impacts on growth-factor-stimulated actin remodeling.
V. M. Sharma, J. M. Litersky, K. Bhaskar, and G. Lee (2007)
J. Cell Sci. 120, 748-757
   Abstract »    Full Text »    PDF »
Neuronal polarity is regulated by a direct interaction between a scaffolding protein, Neurabin, and a presynaptic SAD-1 kinase in Caenorhabditis elegans.
W. Hung, C. Hwang, M. D. Po, and M. Zhen (2007)
Development 134, 237-249
   Abstract »    Full Text »    PDF »
Mst3b, a purine-sensitive Ste20-like protein kinase, regulates axon outgrowth.
N. Irwin, Y.-M. Li, J. E. O'Toole, and L. I. Benowitz (2006)
PNAS 103, 18320-18325
   Abstract »    Full Text »    PDF »
mPar6{alpha} Controls Neuronal Migration..
D. J. Solecki, E.-E. Govek, and M. E. Hatten (2006)
J. Neurosci. 26, 10624-10625
   Abstract »    Full Text »    PDF »
Regulators of rho GTPases in neuronal development..
M. Watabe-Uchida, E.-E. Govek, and L. Van Aelst (2006)
J. Neurosci. 26, 10633-10635
   Abstract »    Full Text »    PDF »
Neuronal polarity in CNS development.
D. J. Solecki, E.-E. Govek, T. Tomoda, and M. E. Hatten (2006)
Genes & Dev. 20, 2639-2647
   Abstract »    Full Text »    PDF »
Activated c-Jun N-Terminal Kinase Is Required for Axon Formation..
A. A. Oliva Jr, C. M. Atkins, L. Copenagle, and G. A. Banker (2006)
J. Neurosci. 26, 9462-9470
   Abstract »    Full Text »    PDF »
The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions.
S. Cordes, C. A. Frank, and G. Garriga (2006)
Development 133, 2747-2756
   Abstract »    Full Text »    PDF »
Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity.
Y. M. Chen, Q. J. Wang, H. S. Hu, P. C. Yu, J. Zhu, G. Drewes, H. Piwnica-Worms, and Z. G. Luo (2006)
PNAS 103, 8534-8539
   Abstract »    Full Text »    PDF »
GSK-3beta Directly Phosphorylates and Activates MARK2/PAR-1.
S. Kosuga, E. Tashiro, T. Kajioka, M. Ueki, Y. Shimizu, and M. Imoto (2005)
J. Biol. Chem. 280, 42715-42722
   Abstract »    Full Text »    PDF »
14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK.
A. K. Al-Hakim, O. Goransson, M. Deak, R. Toth, D. G. Campbell, N. A. Morrice, A. R. Prescott, and D. R. Alessi (2005)
J. Cell Sci. 118, 5661-5673
   Abstract »    Full Text »    PDF »
POPK-1/Sad-1 kinase is required for the proper translocation of maternal mRNAs and putative germ plasm at the posterior pole of the ascidian embryo.
Y. Nakamura, K. W. Makabe, and H. Nishida (2005)
Development 132, 4731-4742
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882