Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5714): 1468-1472

Copyright © 2005 by the American Association for the Advancement of Science

Impaired Thermosensation in Mice Lacking TRPV3, a Heat and Camphor Sensor in the Skin

Aziz Moqrich,1,2* Sun Wook Hwang,1* Taryn J. Earley,1 Matt J. Petrus,2 Amber N. Murray,1 Kathryn S. R. Spencer,1 Mary Andahazy,2 Gina M. Story,1 Ardem Patapoutian1,2{dagger}

Abstract: Environmental temperature is thought to be directly sensed by neurons through their projections in the skin. A subset of the mammalian transient receptor potential (TRP) family of ion channels has been implicated in this process. These "thermoTRPs" are activated at distinct temperature thresholds and are typically expressed in sensory neurons. TRPV3 is activated by heat (>33°C) and, unlike most thermoTRPs, is expressed in mouse keratinocytes. We found that TRPV3 null mice have strong deficits in responses to innocuous and noxious heat but not in other sensory modalities; hence, TRPV3 has a specific role in thermosensation. The natural compound camphor, which modulates sensations of warmth in humans, proved to be a specific activator of TRPV3. Camphor activated cultured primary keratinocytes but not sensory neurons, and this activity was abolished in TRPV3 null mice. Therefore, heat-activated receptors in keratinocytes are important for mammalian thermosensation.

1 Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
2 Genomics Institute, Novartis Research Foundation, San Diego, CA 92121, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: ardem{at}

Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine.
B. Nilius and A. Szallasi (2014)
Pharmacol. Rev. 66, 676-814
   Abstract »    Full Text »    PDF »
TRPV3: time to decipher a poorly understood family member!.
B. Nilius, T. Biro, and G. Owsianik (2014)
J. Physiol. 592, 295-304
   Abstract »    Full Text »    PDF »
Dynamic and Permissive Roles of TRPV1 and TRPV4 Channels for Thermosensation in Mouse Supraoptic Magnocellular Neurosecretory Neurons.
J. R. Sudbury and C. W. Bourque (2013)
J. Neurosci. 33, 17160-17165
   Abstract »    Full Text »    PDF »
Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition.
I. Vetter, A. Hein, S. Sattler, S. Hessler, F. Touska, E. Bressan, A. Parra, U. Hager, A. Leffler, S. Boukalova, et al. (2013)
J. Neurosci. 33, 16627-16641
   Abstract »    Full Text »    PDF »
Sodium-Mediated Plateau Potentials in Lumbar Motoneurons of Neonatal Rats.
M. Bouhadfane, S. Tazerart, A. Moqrich, L. Vinay, and F. Brocard (2013)
J. Neurosci. 33, 15626-15641
   Abstract »    Full Text »    PDF »
Camphor Activates and Sensitizes Transient Receptor Potential Melastatin 8 (TRPM8) to Cooling and Icilin.
T. Selescu, A. C. Ciobanu, C. Dobre, G. Reid, and A. Babes (2013)
Chem Senses 38, 563-575
   Abstract »    Full Text »    PDF »
UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.
C. Moore, F. Cevikbas, H. A. Pasolli, Y. Chen, W. Kong, C. Kempkes, P. Parekh, S. H. Lee, N.-A. Kontchou, I. Yeh, et al. (2013)
PNAS 110, E3225-E3234
   Abstract »    Full Text »    PDF »
A Sensory-Labeled Line for Cold: TRPM8-Expressing Sensory Neurons Define the Cellular Basis for Cold, Cold Pain, and Cooling-Mediated Analgesia.
W. M. Knowlton, R. Palkar, E. K. Lippoldt, D. D. McCoy, F. Baluch, J. Chen, and D. D. McKemy (2013)
J. Neurosci. 33, 2837-2848
   Abstract »    Full Text »    PDF »
Intracellular Proton-mediated Activation of TRPV3 Channels Accounts for the Exfoliation Effect of {alpha}-Hydroxyl Acids on Keratinocytes.
X. Cao, F. Yang, J. Zheng, and K. Wang (2012)
J. Biol. Chem. 287, 25905-25916
   Abstract »    Full Text »    PDF »
Heteromeric Heat-sensitive Transient Receptor Potential Channels Exhibit Distinct Temperature and Chemical Response.
W. Cheng, F. Yang, S. Liu, C. K. Colton, C. Wang, Y. Cui, X. Cao, M. X. Zhu, C. Sun, K. Wang, et al. (2012)
J. Biol. Chem. 287, 7279-7288
   Abstract »    Full Text »    PDF »
Role of thromboxane A2-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat.
H. Y. Yoo, S. J. Park, E.-Y. Seo, K. S. Park, J.-A. Han, K. S. Kim, D. H. Shin, Y. E. Earm, Y.-H. Zhang, and S. J. Kim (2012)
Am J Physiol Cell Physiol 302, C307-C317
   Abstract »    Full Text »    PDF »
Thrombospondin-1 Triggers Cell Migration and Development of Advanced Prostate Tumors.
V. Firlej, J. R. R. Mathieu, C. Gilbert, L. Lemonnier, J. Nakhle, C. Gallou-Kabani, B. Guarmit, A. Morin, N. Prevarskaya, N. B. Delongchamps, et al. (2011)
Cancer Res. 71, 7649-7658
   Abstract »    Full Text »    PDF »
Hysteresis of gating underlines sensitization of TRPV3 channels.
B. Liu, J. Yao, M. X. Zhu, and F. Qin (2011)
J. Gen. Physiol. 138, 509-520
   Abstract »    Full Text »    PDF »
Central circuitries for body temperature regulation and fever.
K. Nakamura (2011)
Am J Physiol Regulatory Integrative Comp Physiol 301, R1207-R1228
   Abstract »    Full Text »    PDF »
TRP Vanilloid 2 Knock-Out Mice Are Susceptible to Perinatal Lethality But Display Normal Thermal and Mechanical Nociception.
U. Park, N. Vastani, Y. Guan, S. N. Raja, M. Koltzenburg, and M. J. Caterina (2011)
J. Neurosci. 31, 11425-11436
   Abstract »    Full Text »    PDF »
Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes.
H. Mihara, A. Boudaka, T. Sugiyama, Y. Moriyama, and M. Tominaga (2011)
J. Physiol. 589, 3471-3482
   Abstract »    Full Text »    PDF »
Scraping through the ice: uncovering the role of TRPM8 in cold transduction.
D. D. McCoy, W. M. Knowlton, and D. D. McKemy (2011)
Am J Physiol Regulatory Integrative Comp Physiol 300, R1278-R1287
   Abstract »    Full Text »    PDF »
Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis.
J. F. Doerner, H. Hatt, and I. S. Ramsey (2011)
J. Gen. Physiol. 137, 271-288
   Abstract »    Full Text »    PDF »
TRPV1-lineage neurons are required for thermal sensation.
S. K. Mishra, S. M. Tisel, P. Orestes, S. K. Bhangoo, and M. A. Hoon (2011)
EMBO J. 30, 582-593
   Abstract »    Full Text »    PDF »
Laser Modulation of Heat and Capsaicin Receptor TRPV1 Leads to Thermal Antinociception.
J.- J. Ryu, S. Yoo, K. Y. Kim, J.- S. Park, S. Bang, S. H. Lee, T.- J. Yang, H. Cho, and S. W. Hwang (2010)
Journal of Dental Research 89, 1455-1460
   Abstract »    Full Text »    PDF »
The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling.
M. Gees, B. Colsoul, and B. Nilius (2010)
Cold Spring Harb Perspect Biol 2, a003962
   Abstract »    Full Text »    PDF »
Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes.
K. Kohno, T. Sokabe, M. Tominaga, and T. Kadowaki (2010)
J. Neurosci. 30, 12219-12229
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family.
L.-J. Wu, T.-B. Sweet, and D. E. Clapham (2010)
Pharmacol. Rev. 62, 381-404
   Abstract »    Full Text »    PDF »
Farnesyl Pyrophosphate Is a Novel Pain-producing Molecule via Specific Activation of TRPV3.
S. Bang, S. Yoo, T.-J. Yang, H. Cho, and S. W. Hwang (2010)
J. Biol. Chem. 285, 19362-19371
   Abstract »    Full Text »    PDF »
The TRPV4 Channel Contributes to Intercellular Junction Formation in Keratinocytes.
T. Sokabe, T. Fukumi-Tominaga, S. Yonemura, A. Mizuno, and M. Tominaga (2010)
J. Biol. Chem. 285, 18749-18758
   Abstract »    Full Text »    PDF »
A Dietary Agonist of Transient Receptor Potential Cation Channel V3 Elicits Endothelium-Dependent Vasodilation.
S. Earley, A. L. Gonzales, and Z. I. Garcia (2010)
Mol. Pharmacol. 77, 612-620
   Abstract »    Full Text »    PDF »
Ecto-5'-Nucleotidase (CD73) Inhibits Nociception by Hydrolyzing AMP to Adenosine in Nociceptive Circuits.
N. A. Sowa, B. Taylor-Blake, and M. J. Zylka (2010)
J. Neurosci. 30, 2235-2244
   Abstract »    Full Text »    PDF »
The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not.
A. A. Romanovsky, M. C. Almeida, A. Garami, A. A. Steiner, M. H. Norman, S. F. Morrison, K. Nakamura, J. J. Burmeister, and T. B. Nucci (2009)
Pharmacol. Rev. 61, 228-261
   Abstract »    Full Text »    PDF »
Pharmacology of Vanilloid Transient Receptor Potential Cation Channels.
J. Vriens, G. Appendino, and B. Nilius (2009)
Mol. Pharmacol. 75, 1262-1279
   Abstract »    Full Text »    PDF »
The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception.
J. Noel, K. Zimmermann, J. Busserolles, E. Deval, A. Alloui, S. Diochot, N. Guy, M. Borsotto, P. Reeh, A. Eschalier, et al. (2009)
EMBO J. 28, 1308-1318
   Abstract »    Full Text »    PDF »
TRPA1 Modulates Mechanotransduction in Cutaneous Sensory Neurons.
K. Y. Kwan, J. M. Glazer, D. P. Corey, F. L. Rice, and C. L. Stucky (2009)
J. Neurosci. 29, 4808-4819
   Abstract »    Full Text »    PDF »
Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4.
H. Hu, J. Grandl, M. Bandell, M. Petrus, and A. Patapoutian (2009)
PNAS 106, 1626-1631
   Abstract »    Full Text »    PDF »
Involvement of Transient Receptor Potential Vanilloid Subtype 1 in Analgesic Action of Methylsalicylate.
T. Ohta, T. Imagawa, and S. Ito (2009)
Mol. Pharmacol. 75, 307-317
   Abstract »    Full Text »    PDF »
TRPA1 acts as a cold sensor in vitro and in vivo.
Y. Karashima, K. Talavera, W. Everaerts, A. Janssens, K. Y. Kwan, R. Vennekens, B. Nilius, and T. Voets (2009)
PNAS 106, 1273-1278
   Abstract »    Full Text »    PDF »
Overexpressed Transient Receptor Potential Vanilloid 3 Ion Channels in Skin Keratinocytes Modulate Pain Sensitivity via Prostaglandin E2.
S. M. Huang, H. Lee, M.-K. Chung, U. Park, Y. Y. Yu, H. B. Bradshaw, P. A. Coulombe, J. M. Walker, and M. J. Caterina (2008)
J. Neurosci. 28, 13727-13737
   Abstract »    Full Text »    PDF »
Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain.
A. Moussaieff, N. Rimmerman, T. Bregman, A. Straiker, C. C. Felder, S. Shoham, Y. Kashman, S. M. Huang, H. Lee, E. Shohami, et al. (2008)
FASEB J 22, 3024-3034
   Abstract »    Full Text »    PDF »
TRPA1 Channels Mediate Cold Temperature Sensing in Mammalian Vagal Sensory Neurons: Pharmacological and Genetic Evidence.
O. Fajardo, V. Meseguer, C. Belmonte, and F. Viana (2008)
J. Neurosci. 28, 7863-7875
   Abstract »    Full Text »    PDF »
Central control of thermogenesis in mammals.
S. F. Morrison, K. Nakamura, and C. J. Madden (2008)
Exp Physiol 93, 773-797
   Abstract »    Full Text »    PDF »
Calcium Plays a Central Role in the Sensitization of TRPV3 Channel to Repetitive Stimulations.
R. Xiao, J. Tang, C. Wang, C. K. Colton, J. Tian, and M. X. Zhu (2008)
J. Biol. Chem. 283, 6162-6174
   Abstract »    Full Text »    PDF »
A Role of the Transient Receptor Potential Domain of Vanilloid Receptor I in Channel Gating.
N. Garcia-Sanz, P. Valente, A. Gomis, A. Fernandez-Carvajal, G. Fernandez-Ballester, F. Viana, C. Belmonte, and A. Ferrer-Montiel (2007)
J. Neurosci. 27, 11641-11650
   Abstract »    Full Text »    PDF »
Repeated Administration of Vanilloid Receptor TRPV1 Antagonists Attenuates Hyperthermia Elicited by TRPV1 Blockade.
N. R. Gavva, A. W. Bannon, D. N. Hovland Jr., S. G. Lehto, L. Klionsky, S. Surapaneni, D. C. Immke, C. Henley, L. Arik, A. Bak, et al. (2007)
J. Pharmacol. Exp. Ther. 323, 128-137
   Abstract »    Full Text »    PDF »
Nonthermal Activation of Transient Receptor Potential Vanilloid-1 Channels in Abdominal Viscera Tonically Inhibits Autonomic Cold-Defense Effectors.
A. A. Steiner, V. F. Turek, M. C. Almeida, J. J. Burmeister, D. L. Oliveira, J. L. Roberts, A. W. Bannon, M. H. Norman, J.-C. Louis, J. J. S. Treanor, et al. (2007)
J. Neurosci. 27, 7459-7468
   Abstract »    Full Text »    PDF »
The Vanilloid Receptor TRPV1 Is Tonically Activated In Vivo and Involved in Body Temperature Regulation.
N. R. Gavva, A. W. Bannon, S. Surapaneni, D. N. Hovland Jr, S. G. Lehto, A. Gore, T. Juan, H. Deng, B. Han, L. Klionsky, et al. (2007)
J. Neurosci. 27, 3366-3374
   Abstract »    Full Text »    PDF »
Role of Adaptation in C. elegans thermotaxis. Focus on "Short-Term Adaptation and Temporal Processing in the Cryophilic Response of Caenorabditis elegans".
P. A. Garrity (2007)
J Neurophysiol 97, 1874-1876
   Full Text »    PDF »
Neurons in Superficial Trigeminal Subnucleus Caudalis Responsive to Oral Cooling, Menthol, and Other Irritant Stimuli.
K. L. Zanotto, A. W. Merrill, M. I. Carstens, and E. Carstens (2007)
J Neurophysiol 97, 966-978
   Abstract »    Full Text »    PDF »
K. Kiselyov, A. Soyombo, and S. Muallem (2007)
J. Physiol. 578, 641-653
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »
Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system.
A. A. Romanovsky (2007)
Am J Physiol Regulatory Integrative Comp Physiol 292, R37-R46
   Abstract »    Full Text »    PDF »
Transient receptor potential ion channels as participants in thermosensation and thermoregulation.
M. J. Caterina (2007)
Am J Physiol Regulatory Integrative Comp Physiol 292, R64-R76
   Abstract »    Full Text »    PDF »
A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release.
A. M. Jose, I. A. Bany, D. L. Chase, and M. R. Koelle (2007)
Genetics 175, 93-105
   Abstract »    Full Text »    PDF »
Evolution of thermoTRP ion channel homologs in vertebrates.
S. Saito and R. Shingai (2006)
Physiol Genomics 27, 219-230
   Abstract »    Full Text »    PDF »
Bisandrographolide from Andrographis paniculata Activates TRPV4 Channels.
P. L. Smith, K. N. Maloney, R. G. Pothen, J. Clardy, and D. E. Clapham (2006)
J. Biol. Chem. 281, 29897-29904
   Abstract »    Full Text »    PDF »
Neuronal control of skin function: the skin as a neuroimmunoendocrine organ..
D. Roosterman, T. Goerge, S. W. Schneider, N. W. Bunnett, and M. Steinhoff (2006)
Physiol Rev 86, 1309-1379
   Abstract »    Full Text »    PDF »
Structure of the N-terminal Ankyrin Repeat Domain of the TRPV2 Ion Channel.
X. Jin, J. Touhey, and R. Gaudet (2006)
J. Biol. Chem. 281, 25006-25010
   Abstract »    Full Text »    PDF »
TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion.
K. Togashi, Y. Hara, T. Tominaga, T. Higashi, Y. Konishi, Y. Mori, and M. Tominaga (2006)
EMBO J. 25, 1804-1815
   Abstract »    Full Text »    PDF »
Deficient Nonpeptidergic Epidermis Innervation and Reduced Inflammatory Pain in Glial Cell Line-Derived Neurotrophic Factor Family Receptor {alpha}2 Knock-Out Mice.
P. H. Lindfors, V. Voikar, J. Rossi, and M. S. Airaksinen (2006)
J. Neurosci. 26, 1953-1960
   Abstract »    Full Text »    PDF »
Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism.
H. Xu, N. T. Blair, and D. E. Clapham (2005)
J. Neurosci. 25, 8924-8937
   Abstract »    Full Text »    PDF »
The contribution of TRPM8 channels to cold sensing in mammalian neurones.
E. de la Pena, A. Malkia, H. Cabedo, C. Belmonte, and F. Viana (2005)
J. Physiol. 567, 415-426
   Abstract »    Full Text »    PDF »
Gating of TRP channels: a voltage connection?.
B. Nilius, K. Talavera, G. Owsianik, J. Prenen, G. Droogmans, and T. Voets (2005)
J. Physiol. 567, 35-44
   Abstract »    Full Text »    PDF »
Fried Mice: Feeling the Heat.
Journal Watch Dermatology 2005, 2
   Full Text »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882