Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 307 (5714): 1476-1479

Copyright © 2005 by the American Association for the Advancement of Science

How Visual Stimuli Activate Dopaminergic Neurons at Short Latency

Eleanor Dommett,1* Véronique Coizet,1* Charles D. Blaha,2{dagger} John Martindale,1 Véronique Lefebvre,1 Natalie Walton,1 John E. W. Mayhew,1 Paul G. Overton,1 Peter Redgrave1{ddagger}

Abstract: Unexpected, biologically salient stimuli elicit a short-latency, phasic response in midbrain dopaminergic (DA) neurons. Although this signal is important for reinforcement learning, the information it conveys to forebrain target structures remains uncertain. One way to decode the phasic DA signal would be to determine the perceptual properties of sensory inputs to DA neurons. After local disinhibition of the superior colliculus in anesthetized rats, DA neurons became visually responsive, whereas disinhibition of the visual cortex was ineffective. As the primary source of visual afferents, the limited processing capacities of the colliculus may constrain the visual information content of phasic DA responses.

1 Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK.
2 Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia.

* These authors contributed equally to this work.

{dagger} Present address: Department of Psychology, University of Memphis, Memphis, TN 38152–3230, USA.

{ddagger} To whom correspondence should be addressed. E-mail: P.Redgrave{at}sheffield.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cortical regulation of dopaminergic neurons: role of the midbrain superior colliculus.
C. Bertram, L. Dahan, L. W. Boorman, S. Harris, N. Vautrelle, M. Leriche, P. Redgrave, and P. G. Overton (2014)
J Neurophysiol 111, 755-767
   Abstract »    Full Text »    PDF »
Stimulation-Evoked Dopamine Release in the Nucleus Accumbens Following Cocaine Administration in Rats Perinatally Exposed to Polychlorinated Biphenyls.
J. R. Fielding, T. D. Rogers, A. E. Meyer, M. M. Miller, J. L. Nelms, G. Mittleman, C. D. Blaha, and H. J. K. Sable (2013)
Toxicol. Sci. 136, 144-153
   Abstract »    Full Text »    PDF »
Many hats: intratrial and reward level-dependent BOLD activity in the striatum and premotor cortex.
E. J. Peterson and C. A. Seger (2013)
J Neurophysiol 110, 1689-1702
   Abstract »    Full Text »    PDF »
Laminar profile of visual response properties in ferret superior colliculus.
I. Stitt, E. Galindo-Leon, F. Pieper, G. Engler, and A. K. Engel (2013)
J Neurophysiol 110, 1333-1345
   Abstract »    Full Text »    PDF »
Dopamine Regulates Two Classes of Primate Prefrontal Neurons That Represent Sensory Signals.
S. N. Jacob, T. Ott, and A. Nieder (2013)
J. Neurosci. 33, 13724-13734
   Abstract »    Full Text »    PDF »
Distinct prestimulus and poststimulus activation of VTA neurons correlates with stimulus detection.
N. K. B. Totah, Y. Kim, and B. Moghaddam (2013)
J Neurophysiol 110, 75-85
   Abstract »    Full Text »    PDF »
Multiphasic Temporal Dynamics in Responses of Midbrain Dopamine Neurons to Appetitive and Aversive Stimuli.
C. D. Fiorillo, M. R. Song, and S. R. Yun (2013)
J. Neurosci. 33, 4710-4725
   Abstract »    Full Text »    PDF »
{alpha}6* Nicotinic Acetylcholine Receptor Expression and Function in a Visual Salience Circuit.
E. D. W. Mackey, S. E. Engle, M. R. Kim, H. C. O'Neill, C. R. Wageman, N. E. Patzlaff, Y. Wang, S. R. Grady, J. M. McIntosh, M. J. Marks, et al. (2012)
J. Neurosci. 32, 10226-10237
   Abstract »    Full Text »    PDF »
Physiological evidence for a trans-basal ganglia pathway linking extrastriate visual cortex and the superior colliculus.
H. Jiang, B. E. Stein, and J. G. McHaffie (2011)
J. Physiol. 589, 5785-5799
   Abstract »    Full Text »    PDF »
Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement.
Y. Smith, D. J. Surmeier, P. Redgrave, and M. Kimura (2011)
J. Neurosci. 31, 16102-16106
   Abstract »    Full Text »    PDF »
Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo.
J. M. Schulz, T. L. Pitcher, S. Savanthrapadian, J. R. Wickens, M. J. Oswald, and J. N. J. Reynolds (2011)
J. Physiol. 589, 4365-4381
   Abstract »    Full Text »    PDF »
Visual-Induced Excitation Leads to Firing Pauses in Striatal Cholinergic Interneurons.
J. M. Schulz, M. J. Oswald, and J. N. J. Reynolds (2011)
J. Neurosci. 31, 11133-11143
   Abstract »    Full Text »    PDF »
Emergent pharmacology of conscious experience: new perspectives in substance addiction.
J.-P. Changeux and H. C. Lou (2011)
FASEB J 25, 2098-2108
   Abstract »    Full Text »    PDF »
Task-Load-Dependent Activation of Dopaminergic Midbrain Areas in the Absence of Reward.
C. N. Boehler, J.-M. Hopf, R. M. Krebs, C. M. Stoppel, M. A. Schoenfeld, H.-J. Heinze, and T. Noesselt (2011)
J. Neurosci. 31, 4955-4961
   Abstract »    Full Text »    PDF »
Dopaminergic stimulation enhances confidence and accuracy in seeing rapidly presented words.
H. C. Lou, J. C. Skewes, K. R. Thomsen, M. Overgaard, H. C. Lau, K. Mouridsen, and A. Roepstorff (2011)
J Vis 11, 15
   Abstract »    Full Text »    PDF »
Neural Correlates of Active Avoidance Behavior in Superior Colliculus.
J. D. Cohen and M. A. Castro-Alamancos (2010)
J. Neurosci. 30, 8502-8511
   Abstract »    Full Text »    PDF »
A Basal Ganglia Pathway Drives Selective Auditory Responses in Songbird Dopaminergic Neurons via Disinhibition.
S. D. Gale and D. J. Perkel (2010)
J. Neurosci. 30, 1027-1037
   Abstract »    Full Text »    PDF »
Perceptual Learning of Object Shape.
D. Golcu and C. D. Gilbert (2009)
J. Neurosci. 29, 13621-13629
   Abstract »    Full Text »    PDF »
Short-Latency Activation of Striatal Spiny Neurons via Subcortical Visual Pathways.
J. M. Schulz, P. Redgrave, C. Mehring, A. Aertsen, K. M. Clements, J. R. Wickens, and J. N. J. Reynolds (2009)
J. Neurosci. 29, 6336-6347
   Abstract »    Full Text »    PDF »
Short-Latency Visual Input to the Subthalamic Nucleus Is Provided by the Midbrain Superior Colliculus.
V. Coizet, J. H. Graham, J. Moss, J. P. Bolam, M. Savasta, J. G. McHaffie, P. Redgrave, and P. G. Overton (2009)
J. Neurosci. 29, 5701-5709
   Abstract »    Full Text »    PDF »
A Role for Conditioned Ventral Tegmental Glutamate Release in Cocaine Seeking.
Z.-B. You, B. Wang, D. Zitzman, S. Azari, and R. A. Wise (2007)
J. Neurosci. 27, 10546-10555
   Abstract »    Full Text »    PDF »
The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons?.
E. B. Margolis, H. Lock, G. O. Hjelmstad, and H. L. Fields (2006)
J. Physiol. 577, 907-924
   Abstract »    Full Text »    PDF »
A Physiologically Plausible Model of Action Selection and Oscillatory Activity in the Basal Ganglia.
M. D. Humphries, R. D. Stewart, and K. N. Gurney (2006)
J. Neurosci. 26, 12921-12942
   Abstract »    Full Text »    PDF »
Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum..
M. R. Stefani and B. Moghaddam (2006)
J. Neurosci. 26, 8810-8818
   Abstract »    Full Text »    PDF »
Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning..
S. N. Haber, K.-S. Kim, P. Mailly, and R. Calzavara (2006)
J. Neurosci. 26, 8368-8376
   Abstract »    Full Text »    PDF »
Role of brain dopamine in food reward and reinforcement.
R. A Wise (2006)
Phil Trans R Soc B 361, 1149-1158
   Abstract »    Full Text »    PDF »
Basal Ganglia Orient Eyes to Reward.
O. Hikosaka, K. Nakamura, and H. Nakahara (2006)
J Neurophysiol 95, 567-584
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882