Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 307 (5716): 1776-1778

Copyright © 2005 by the American Association for the Advancement of Science

Uncharged tRNA and Sensing of Amino Acid Deficiency in Mammalian Piriform Cortex

Shuzhen Hao,1 James W. Sharp,1 Catherine M. Ross-Inta,1 Brent J. McDaniel,2 Tracy G. Anthony,2 Ronald C. Wek,3 Douglas R. Cavener,4 Barbara C. McGrath,4 John B. Rudell,1 Thomas J. Koehnle,5 Dorothy W. Gietzen1*

Abstract: Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the mechanism for recognizing IAA-deficient foods follows the conserved general control (GC) system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 (eIF2) via the GC nonderepressing 2 (GCN2) kinase. Thus, a basic mechanism of nutritional stress management functions in mammalian brain to guide food selection for survival.

1 School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA.
2 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Evansville, IN 47712, USA.
3 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
4 Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
5 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.

* To whom correspondence should be addressed. E-mail: dwgietzen{at}

Vaccine Activation of the Nutrient Sensor GCN2 in Dendritic Cells Enhances Antigen Presentation.
R. Ravindran, N. Khan, H. I. Nakaya, S. Li, J. Loebbermann, M. S. Maddur, Y. Park, D. P. Jones, P. Chappert, J. Davoust, et al. (2014)
Science 343, 313-317
   Abstract »    Full Text »    PDF »
The eukaryotic initiation factor 2 kinase GCN2 protects against hepatotoxicity during asparaginase treatment.
G. J. Wilson, P. Bunpo, J. K. Cundiff, R. C. Wek, and T. G. Anthony (2013)
Am J Physiol Endocrinol Metab 305, E1124-E1133
   Abstract »    Full Text »    PDF »
General Control Nonderepressible 2 (GCN2) Kinase Protects Oligodendrocytes and White Matter during Branched-chain Amino Acid Deficiency in Mice.
P. She, P. Bunpo, J. K. Cundiff, R. C. Wek, R. A. Harris, and T. G. Anthony (2013)
J. Biol. Chem. 288, 31250-31260
   Abstract »    Full Text »    PDF »
GCN2 regulates the CCAAT enhancer binding protein beta and hepatic gluconeogenesis.
X. Xu, J. Hu, B. C. McGrath, and D. R. Cavener (2013)
Am J Physiol Endocrinol Metab 305, E1007-E1017
   Abstract »    Full Text »    PDF »
Remodeling of Lipid Metabolism by Dietary Restriction of Essential Amino Acids.
T. G. Anthony, C. D. Morrison, and T. W. Gettys (2013)
Diabetes 62, 2635-2644
   Full Text »    PDF »
IMPACT Is a Developmentally Regulated Protein in Neurons That Opposes the Eukaryotic Initiation Factor 2{alpha} Kinase GCN2 in the modulation of Neurite Outgrowth.
M. Roffe, G. N. M. Hajj, H. F. Azevedo, V. S. Alves, and B. A. Castilho (2013)
J. Biol. Chem. 288, 10860-10869
   Abstract »    Full Text »    PDF »
Protein leverage affects energy intake of high-protein diets in humans.
E. A. Martens, S. G. Lemmens, and M. S. Westerterp-Plantenga (2013)
Am J Clin Nutr 97, 86-93
   Abstract »    Full Text »    PDF »
GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling.
E. C.-H. Lee and K. Strange (2012)
Am J Physiol Cell Physiol 303, C1269-C1277
   Abstract »    Full Text »    PDF »
S6K1 in the Central Nervous System Regulates Energy Expenditure via MC4R/CRH Pathways in Response to Deprivation of an Essential Amino Acid.
T. Xia, Y. Cheng, Q. Zhang, F. Xiao, B. Liu, S. Chen, and F. Guo (2012)
Diabetes 61, 2461-2471
   Abstract »    Full Text »    PDF »
Providing a diet deficient in valine but with excess leucine results in a rapid decrease in feed intake and modifies the postprandial plasma amino acid and {alpha}-keto acid concentrations in pigs.
M. Gloaguen, N. Le Floc'h, E. Corrent, Y. Primot, and J. van Milgen (2012)
J Anim Sci 90, 3135-3142
   Abstract »    Full Text »    PDF »
Consolidation and translation regulation.
S. Gal-Ben-Ari, J. W. Kenney, H. Ounalla-Saad, E. Taha, O. David, D. Levitan, I. Gildish, D. Panja, B. Pai, K. Wibrand, et al. (2012)
Learn. Mem. 19, 410-422
   Abstract »    Full Text »    PDF »
The Transcription Factor Network Associated With the Amino Acid Response in Mammalian Cells.
M. S. Kilberg, M. Balasubramanian, L. Fu, and J. Shan (2012)
Adv Nutr 3, 295-306
   Abstract »    Full Text »    PDF »
Eukaryotic Initiation Factor 2 Phosphorylation and Translational Control in Metabolism.
T. D. Baird and R. C. Wek (2012)
Adv Nutr 3, 307-321
   Abstract »    Full Text »    PDF »
Brain Responses to High-Protein Diets.
M. Journel, C. Chaumontet, N. Darcel, G. Fromentin, and D. Tome (2012)
Adv Nutr 3, 322-329
   Abstract »    Full Text »    PDF »
Homeostatic regulation of protein intake: in search of a mechanism.
C. D. Morrison, S. D. Reed, and T. M. Henagan (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R917-R928
   Abstract »    Full Text »    PDF »
An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA.
F. Zhang and A. G. Hinnebusch (2011)
Nucleic Acids Res. 39, 3128-3140
   Abstract »    Full Text »    PDF »
E. Sattlegger, J. A. R. G. Barbosa, M. C. S. Moraes, R. M. Martins, A. G. Hinnebusch, and B. A. Castilho (2011)
J. Biol. Chem. 286, 10341-10355
   Abstract »    Full Text »    PDF »
The Anterior Piriform Cortex Is Sufficient for Detecting Depletion of an Indispensable Amino Acid, Showing Independent Cortical Sensory Function.
J. B. Rudell, A. J. Rechs, T. J. Kelman, C. M. Ross-Inta, S. Hao, and D. W. Gietzen (2011)
J. Neurosci. 31, 1583-1590
   Abstract »    Full Text »    PDF »
The eIF2 Kinase GCN2 Is Essential for the Murine Immune System to Adapt to Amino Acid Deprivation by Asparaginase.
P. Bunpo, J. K. Cundiff, R. B. Reinert, R. C. Wek, C. J. Aldrich, and T. G. Anthony (2010)
J. Nutr. 140, 2020-2027
   Abstract »    Full Text »    PDF »
tRNA biology charges to the front.
E. M. Phizicky and A. K. Hopper (2010)
Genes & Dev. 24, 1832-1860
   Abstract »    Full Text »    PDF »
The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation.
J. Ye, M. Kumanova, L. S. Hart, K. Sloane, H. Zhang, D. N. De Panis, E. Bobrovnikova-Marjon, J. A. Diehl, D. Ron, and C. Koumenis (2010)
EMBO J. 29, 2082-2096
   Abstract »    Full Text »    PDF »
Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.
K. Nagao, M. Bannai, S. Seki, N. Kawai, M. Mori, and M. Takahashi (2010)
Am J Physiol Endocrinol Metab 298, E1170-E1178
   Abstract »    Full Text »    PDF »
Expression profiling after activation of amino acid deprivation response in HepG2 human hepatoma cells.
J. Shan, M.-C. Lopez, H. V. Baker, and M. S. Kilberg (2010)
Physiol Genomics 41, 315-327
   Abstract »    Full Text »    PDF »
Single-Protein Casein and Gelatin Diets Affect Energy Expenditure Similarly but Substrate Balance and Appetite Differently in Adults.
A. Hochstenbach-Waelen, M. S. Westerterp-Plantenga, M. A. B. Veldhorst, and K. R. Westerterp (2009)
J. Nutr. 139, 2285-2292
   Abstract »    Full Text »    PDF »
Genome-wide Analysis of tRNA Charging and Activation of the eIF2 Kinase Gcn2p.
J. M. Zaborske, J. Narasimhan, L. Jiang, S. A. Wek, K. A. Dittmar, F. Freimoser, T. Pan, and R. C. Wek (2009)
J. Biol. Chem. 284, 25254-25267
   Abstract »    Full Text »    PDF »
Infectious tolerance via the consumption of essential amino acids and mTOR signaling.
S. P. Cobbold, E. Adams, C. A. Farquhar, K. F. Nolan, D. Howie, K. O. Lui, P. J. Fairchild, A. L. Mellor, D. Ron, and H. Waldmann (2009)
PNAS 106, 12055-12060
   Abstract »    Full Text »    PDF »
Threonine-deficient diets induced changes in hepatic bioenergetics.
C. M. Ross-Inta, Y.-F. Zhang, A. Almendares, and C. Giulivi (2009)
Am J Physiol Gastrointest Liver Physiol 296, G1130-G1139
   Abstract »    Full Text »    PDF »
Amino acid regulation of TOR complex 1.
J. Avruch, X. Long, S. Ortiz-Vega, J. Rapley, A. Papageorgiou, and N. Dai (2009)
Am J Physiol Endocrinol Metab 296, E592-E602
   Abstract »    Full Text »    PDF »
A Network of Hydrophobic Residues Impeding Helix {alpha}C Rotation Maintains Latency of Kinase Gcn2, Which Phosphorylates the {alpha} Subunit of Translation Initiation Factor 2.
A. Garriz, H. Qiu, M. Dey, E.-J. Seo, T. E. Dever, and A. G. Hinnebusch (2009)
Mol. Cell. Biol. 29, 1592-1607
   Abstract »    Full Text »    PDF »
Neural and molecular mechanisms of microcognition in Limax.
S. Watanabe, Y. Kirino, and A. Gelperin (2008)
Learn. Mem. 15, 633-642
   Abstract »    Full Text »    PDF »
MEK Signaling Is Required for Phosphorylation of eIF2{alpha} following Amino Acid Limitation of HepG2 Human Hepatoma Cells.
M. M. Thiaville, Y.-X. Pan, A. Gjymishka, C. Zhong, R. J. Kaufman, and M. S. Kilberg (2008)
J. Biol. Chem. 283, 10848-10857
   Abstract »    Full Text »    PDF »
The Saccharomyces Homolog of Mammalian RACK1, Cpc2/Asc1p, Is Required for FLO11-dependent Adhesive Growth and Dimorphism.
O. Valerius, M. Kleinschmidt, N. Rachfall, F. Schulze, S. Lopez Marin, M. Hoppert, K. Streckfuss-Bomeke, C. Fischer, and G. H. Braus (2007)
Mol. Cell. Proteomics 6, 1968-1979
   Abstract »    Full Text »    PDF »
Amino acids, taste circuits, and feeding behavior in Drosophila: towards understanding the psychology of feeding in flies and man.
C. Melcher, R. Bader, and M. J Pankratz (2007)
J. Endocrinol. 192, 467-472
   Abstract »    Full Text »    PDF »
The Eukaryotic Initiation Factor-2 Kinase Pathway Facilitates Differential GADD45a Expression in Response to Environmental Stress.
H.-Y. Jiang, L. Jiang, and R. C. Wek (2007)
J. Biol. Chem. 282, 3755-3765
   Abstract »    Full Text »    PDF »
Leucine in food mediates some of the postprandial rise in plasma leptin concentrations.
C. J. Lynch, B. Gern, C. Lloyd, S. M. Hutson, R. Eicher, and T. C. Vary (2006)
Am J Physiol Endocrinol Metab 291, E621-E630
   Abstract »    Full Text »    PDF »
Active ERK Contributes to Protein Translation by Preventing JNK-Dependent Inhibition of Protein Phosphatase 1.
M. M. Monick, L. S. Powers, T. J. Gross, D. M. Flaherty, C. W. Barrett, and G. W. Hunninghake (2006)
J. Immunol. 177, 1636-1645
   Abstract »    Full Text »    PDF »
Yeast Gcn4p Stabilization Is Initiated by the Dissociation of the Nuclear Pho85p/Pcl5p Complex.
K. Bomeke, R. Pries, V. Korte, E. Scholz, B. Herzog, F. Schulze, and G. H. Braus (2006)
Mol. Biol. Cell 17, 2952-2962
   Abstract »    Full Text »    PDF »
Structural Basis for Autoinhibition and Mutational Activation of Eukaryotic Initiation Factor 2{alpha} Protein Kinase GCN2.
A. K. Padyana, H. Qiu, A. Roll-Mecak, A. G. Hinnebusch, and S. K. Burley (2005)
J. Biol. Chem. 280, 29289-29299
   Abstract »    Full Text »    PDF »
IMPACT, a Protein Preferentially Expressed in the Mouse Brain, Binds GCN1 and Inhibits GCN2 Activation.
C. M. Pereira, E. Sattlegger, H.-Y. Jiang, B. M. Longo, C. B. Jaqueta, A. G. Hinnebusch, R. C. Wek, L. E. A. M. Mello, and B. A. Castilho (2005)
J. Biol. Chem. 280, 28316-28323
   Abstract »    Full Text »    PDF »
That Which Does Not Kill You Makes You Stronger: A Molecular Mechanism for Preconditioning.
J. E. McDunn and J. P. Cobb (2005)
Sci. STKE 2005, pe34
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882