Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 308 (5720): 414-415

Copyright © 2005 by the American Association for the Advancement of Science

Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro

Masato Nakajima, Keiko Imai, Hiroshi Ito, Taeko Nishiwaki, Yoriko Murayama, Hideo Iwasaki, Tokitaka Oyama, Takao Kondo*

Abstract: Kai proteins globally regulate circadian gene expression of cyanobacteria. The KaiC phosphorylation cycle, which persists even without transcription or translation, is assumed to be a basic timing process of the circadian clock. We have reconstituted the self-sustainable oscillation of KaiC phosphorylation in vitro by incubating KaiC with KaiA, KaiB, and adenosine triphosphate. The period of the in vitro oscillation was stable despite temperature change (temperature compensation), and the circadian periods observed in vivo in KaiC mutant strains were consistent with those measured in vitro. The enigma of the circadian clock can now be studied in vitro by examining the interactions between three Kai proteins.

Division of Biological Science, Graduate School of Science, Nagoya University, and the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST), Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

* To whom correspondence should be addressed. E-mail: kondo{at}bio.nagoya-u.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Genes without prominence: a reappraisal of the foundations of biology.
A. Annila and K. Baverstock (2014)
J R Soc Interface 11, 20131017
   Abstract »    Full Text »    PDF »
Synthetic in vitro transcriptional oscillators.
J. Kim and E. Winfree (2014)
Mol Syst Biol 7, 465
   Abstract »    Full Text »    PDF »
Programming an in vitro DNA oscillator using a molecular networking strategy.
K. Montagne, R. Plasson, Y. Sakai, T. Fujii, and Y. Rondelez (2014)
Mol Syst Biol 7, 466
   Abstract »    Full Text »    PDF »
A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock.
C. Brettschneider, R. J. Rose, S. Hertel, I. M. Axmann, A. J. R. Heck, and M. Kollmann (2014)
Mol Syst Biol 6, 389
   Abstract »    Full Text »    PDF »
Construction of an in vitro bistable circuit from synthetic transcriptional switches.
J. Kim, K. S. White, and E. Winfree (2014)
Mol Syst Biol 2, 68
   Abstract »    Full Text »    PDF »
Functioning and robustness of a bacterial circadian clock.
S. Clodong, U. Duhring, L. Kronk, A. Wilde, I. Axmann, H. Herzel, and M. Kollmann (2014)
Mol Syst Biol 3, 90
   Abstract »    Full Text »    PDF »
Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria.
F. Naef (2014)
Mol Syst Biol 1, 2005.0019
   Abstract »    Full Text »    PDF »
Exchange of ADP with ATP in the CII ATPase domain promotes autophosphorylation of cyanobacterial clock protein KaiC.
T. Nishiwaki-Ohkawa, Y. Kitayama, E. Ochiai, and T. Kondo (2014)
PNAS 111, 4455-4460
   Abstract »    Full Text »    PDF »
Minutes, days and years: molecular interactions among different scales of biological timing.
D. A. Golombek, I. L. Bussi, and P. V. Agostino (2014)
Phil Trans R Soc B 369, 20120465
   Abstract »    Full Text »    PDF »
No Time for Spruce: Rapid Dampening of Circadian Rhythms in Picea abies (L. Karst).
N. Gyllenstrand, A. Karlgren, D. Clapham, K. Holm, A. Hall, P. D. Gould, T. Kallman, and U. Lagercrantz (2014)
Plant Cell Physiol. 55, 535-550
   Abstract »    Full Text »    PDF »
Hypersensitive Photic Responses and Intact Genome-Wide Transcriptional Control without the KaiC Phosphorylation Cycle in the Synechococcus Circadian System.
M. Umetani, N. Hosokawa, Y. Kitayama, and H. Iwasaki (2014)
J. Bacteriol. 196, 548-555
   Abstract »    Full Text »    PDF »
A 2D gel electrophoresis-based snapshot of the phosphoproteome in the cyanobacterium Synechocystis sp. strain PCC 6803.
S. Mikkat, S. Fulda, and M. Hagemann (2014)
Microbiology 160, 296-306
   Abstract »    Full Text »    PDF »
Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction.
J. Snijder, R. J. Burnley, A. Wiegard, A. S. J. Melquiond, A. M. J. J. Bonvin, I. M. Axmann, and A. J. R. Heck (2014)
PNAS 111, 1379-1384
   Abstract »    Full Text »    PDF »
Knitting Up the Raveled Sleave of Care.
G. Yang, G. Paschos, A. M. Curtis, E. S. Musiek, S. C. McLoughlin, and G. A. FitzGerald (2013)
Science Translational Medicine 5, 212rv3
   Full Text »    PDF »
Elucidation of the Role of Clp Protease Components in Circadian Rhythm by Genetic Deletion and Overexpression in Cyanobacteria.
K. Imai, Y. Kitayama, and T. Kondo (2013)
J. Bacteriol. 195, 4517-4526
   Abstract »    Full Text »    PDF »
Theophylline-Dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942.
Y. Nakahira, A. Ogawa, H. Asano, T. Oyama, and Y. Tozawa (2013)
Plant Cell Physiol. 54, 1724-1735
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clocks by Redox Homeostasis.
A. Stangherlin and A. B. Reddy (2013)
J. Biol. Chem. 288, 26505-26511
   Abstract »    Full Text »    PDF »
Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus.
N. Hosokawa, H. Kushige, and H. Iwasaki (2013)
PNAS 110, 14486-14491
   Abstract »    Full Text »    PDF »
Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii.
Y. Niwa, T. Matsuo, K. Onai, D. Kato, M. Tachikawa, and M. Ishiura (2013)
PNAS 110, 13666-13671
   Abstract »    Full Text »    PDF »
Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.
J. Cerveny, M. A. Sinetova, L. Valledor, L. A. Sherman, and L. Nedbal (2013)
PNAS 110, 13210-13215
   Abstract »    Full Text »    PDF »
Nuclear Magnetic Resonance Spectroscopy of the Circadian Clock of Cyanobacteria.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2013)
Integr. Comp. Biol. 53, 93-102
   Abstract »    Full Text »    PDF »
Robust Circadian Oscillations in Growing Cyanobacteria Require Transcriptional Feedback.
S.-W. Teng, S. Mukherji, J. R. Moffitt, S. de Buyl, and E. K. O'Shea (2013)
Science 340, 737-740
   Abstract »    Full Text »    PDF »
Presentation of the 2012 Paleontological Society Medal to Bill Schopf.
D. Bottjer (2013)
Journal of Paleontology 87, 526-529
   Full Text »    PDF »
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
A. Wiegard, A. K. Dorrich, H.-T. Deinzer, C. Beck, A. Wilde, J. Holtzendorff, and I. M. Axmann (2013)
Microbiology 159, 948-958
   Abstract »    Full Text »    PDF »
Genome-Wide and Heterocyst-Specific Circadian Gene Expression in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120.
H. Kushige, H. Kugenuma, M. Matsuoka, S. Ehira, M. Ohmori, and H. Iwasaki (2013)
J. Bacteriol. 195, 1276-1284
   Abstract »    Full Text »    PDF »
Robust and tunable circadian rhythms from differentially sensitive catalytic domains.
C. Phong, J. S. Markson, C. M. Wilhoite, and M. J. Rust (2013)
PNAS 110, 1124-1129
   Abstract »    Full Text »    PDF »
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
S. Perez-Santangelo, R. G. Schlaen, and M. J. Yanovsky (2013)
Briefings in Functional Genomics 12, 13-24
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
Y.-I. Kim, D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, and S. S. Golden (2012)
PNAS 109, 17765-17769
   Abstract »    Full Text »    PDF »
Rhythmic ring-ring stacking drives the circadian oscillator clockwise.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2012)
PNAS 109, 16847-16851
   Abstract »    Full Text »    PDF »
Orderly wheels of the cyanobacterial clock.
M. J. Rust (2012)
PNAS 109, 16760-16761
   Full Text »    PDF »
CmpR is Important for Circadian Phasing and Cell Growth.
H. Tanaka, M. Kitamura, Y. Nakano, M. Katayama, Y. Takahashi, T. Kondo, K. Manabe, T. Omata, and S. Kutsuna (2012)
Plant Cell Physiol. 53, 1561-1569
   Abstract »    Full Text »    PDF »
The Roles of the Dimeric and Tetrameric Structures of the Clock Protein KaiB in the Generation of Circadian Oscillations in Cyanobacteria.
R. Murakami, R. Mutoh, R. Iwase, Y. Furukawa, K. Imada, K. Onai, M. Morishita, S. Yasui, K. Ishii, J. O. Valencia Swain, et al. (2012)
J. Biol. Chem. 287, 29506-29515
   Abstract »    Full Text »    PDF »
Circadian Time Redoxed.
M. D. C. Belle and H. D. Piggins (2012)
Science 337, 805-806
   Abstract »    Full Text »    PDF »
RpaB, Another Response Regulator Operating Circadian Clock-dependent Transcriptional Regulation in Synechococcus elongatus PCC 7942.
M. Hanaoka, N. Takai, N. Hosokawa, M. Fujiwara, Y. Akimoto, N. Kobori, H. Iwasaki, T. Kondo, and K. Tanaka (2012)
J. Biol. Chem. 287, 26321-26327
   Abstract »    Full Text »    PDF »
Circadian Autodephosphorylation of Cyanobacterial Clock Protein KaiC Occurs via Formation of ATP as Intermediate.
T. Nishiwaki and T. Kondo (2012)
J. Biol. Chem. 287, 18030-18035
   Abstract »    Full Text »    PDF »
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
T. S. Hatakeyama and K. Kaneko (2012)
PNAS 109, 8109-8114
   Abstract »    Full Text »    PDF »
Fluorescence Correlation Spectroscopy to Monitor Kai Protein-based Circadian Oscillations in Real Time.
K. Goda, H. Ito, T. Kondo, and T. Oyama (2012)
J. Biol. Chem. 287, 3241-3248
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast.
S. L. Harvey, G. Enciso, N. Dephoure, S. P. Gygi, J. Gunawardena, and D. R. Kellogg (2011)
Mol. Biol. Cell 22, 3595-3608
   Abstract »    Full Text »    PDF »
Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus.
N. Hosokawa, T. S. Hatakeyama, T. Kojima, Y. Kikuchi, H. Ito, and H. Iwasaki (2011)
PNAS 108, 15396-15401
   Abstract »    Full Text »    PDF »
Bottom-Up Synthetic Biology: Engineering in a Tinkerer's World.
P. Schwille (2011)
Science 333, 1252-1254
   Abstract »    Full Text »    PDF »
Dynamic fluctuations lubricate the circadian clock.
M.-T. Pai and C. Kalodimos (2011)
PNAS 108, 14377-14378
   Full Text »    PDF »
Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria.
Y.-G. Chang, N.-W. Kuo, R. Tseng, and A. LiWang (2011)
PNAS 108, 14431-14436
   Abstract »    Full Text »    PDF »
Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.
R. A. Hut and D. G. M. Beersma (2011)
Phil Trans R Soc B 366, 2141-2154
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator.
M. J. Rust, S. S. Golden, and E. K. O'Shea (2011)
Science 331, 220-223
   Abstract »    Full Text »    PDF »
Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution.
Y. Murayama, A. Mukaiyama, K. Imai, Y. Onoue, A. Tsunoda, A. Nohara, T. Ishida, Y. Maeda, K. Terauchi, T. Kondo, et al. (2011)
EMBO J. 30, 68-78
   Abstract »    Full Text »    PDF »
Circadian Clocks in Fuel Harvesting and Energy Homeostasis.
K. M. Ramsey and J. Bass (2011)
Cold Spring Harb Symp Quant Biol 76, 63-72
   Abstract »    Full Text »    PDF »
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
D. Zwicker, D. K. Lubensky, and P. R. ten Wolde (2010)
PNAS 107, 22540-22545
   Abstract »    Full Text »    PDF »
Circadian Integration of Metabolism and Energetics.
J. Bass and J. S. Takahashi (2010)
Science 330, 1349-1354
   Abstract »    Full Text »    PDF »
Intermolecular associations determine the dynamics of the circadian KaiABC oscillator.
X. Qin, M. Byrne, T. Mori, P. Zou, D. R. Williams, H. Mchaourab, and C. H. Johnson (2010)
PNAS 107, 14805-14810
   Abstract »    Full Text »    PDF »
Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects.
R. Poire, A. Wiese-Klinkenberg, B. Parent, M. Mielewczik, U. Schurr, F. Tardieu, and A. Walter (2010)
J. Exp. Bot. 61, 1751-1759
   Abstract »    Full Text »    PDF »
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.
T. L. Wood, J. Bridwell-Rabb, Y.-I. Kim, T. Gao, Y.-G. Chang, A. LiWang, D. P. Barondeau, and S. S. Golden (2010)
PNAS 107, 5804-5809
   Abstract »    Full Text »    PDF »
Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria.
Y. Taniguchi, N. Takai, M. Katayama, T. Kondo, and T. Oyama (2010)
PNAS 107, 3263-3268
   Abstract »    Full Text »    PDF »
A circadian clock in Saccharomyces cerevisiae.
Z. Eelderink-Chen, G. Mazzotta, M. Sturre, J. Bosman, T. Roenneberg, and M. Merrow (2010)
PNAS 107, 2043-2047
   Abstract »    Full Text »    PDF »
Oscillations in supercoiling drive circadian gene expression in cyanobacteria.
V. Vijayan, R. Zuzow, and E. K. O'Shea (2009)
PNAS 106, 22564-22568
   Abstract »    Full Text »    PDF »
Rev-erb-{alpha}: an integrator of circadian rhythms and metabolism.
H. Duez and B. Staels (2009)
J Appl Physiol 107, 1972-1980
   Abstract »    Full Text »    PDF »
Basis of Robustness and Resilience in the Suprachiasmatic Nucleus: Individual Neurons Form Nodes in Circuits that Cycle Daily.
M. P. Butler and R. Silver (2009)
J Biol Rhythms 24, 340-352
   Abstract »    PDF »
CKI{varepsilon}/{delta}-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock.
Y. Isojima, M. Nakajima, H. Ukai, H. Fujishima, R. G. Yamada, K.-h. Masumoto, R. Kiuchi, M. Ishida, M. Ukai-Tadenuma, Y. Minami, et al. (2009)
PNAS 106, 15744-15749
   Abstract »    Full Text »    PDF »
The Rolex and the Hourglass: a Simplified Circadian Clock in Prochlorococcus?.
C. W. Mullineaux and R. Stanewsky (2009)
J. Bacteriol. 191, 5333-5335
   Full Text »    PDF »
Biochemical Evidence for a Timing Mechanism in Prochlorococcus.
I. M. Axmann, U. Duhring, L. Seeliger, A. Arnold, J. T. Vanselow, A. Kramer, and A. Wilde (2009)
J. Bacteriol. 191, 5342-5347
   Abstract »    Full Text »    PDF »
Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus.
H. Ito, M. Mutsuda, Y. Murayama, J. Tomita, N. Hosokawa, K. Terauchi, C. Sugita, M. Sugita, T. Kondo, and H. Iwasaki (2009)
PNAS 106, 14168-14173
   Abstract »    Full Text »    PDF »
A Novel Allele of kaiA Shortens the Circadian Period and Strengthens Interaction of Oscillator Components in the Cyanobacterium Synechococcus elongatus PCC 7942.
Y. Chen, Y.-I. Kim, S. R. Mackey, C. K. Holtman, A. LiWang, and S. S. Golden (2009)
J. Bacteriol. 191, 4392-4400
   Abstract »    Full Text »    PDF »
The Evolution of the Cyanobacterial Posttranslational Clock from a Primitive "Phoscillator".
M. J.P. Simons (2009)
J Biol Rhythms 24, 175-182
   Abstract »    PDF »
Plant research accelerates along the (bio)informatics superhighway: Symposium on Plant Sensing, Response and Adaptation to the Environment.
J. M. Jimenez-Gomez and J. N. Maloof (2009)
EMBO Rep. 10, 568-572
   Full Text »    PDF »
Nonparametric entrainment of the in vitro circadian phosphorylation rhythm of cyanobacterial KaiC by temperature cycle.
T. Yoshida, Y. Murayama, H. Ito, H. Kageyama, and T. Kondo (2009)
PNAS 106, 1648-1653
   Abstract »    Full Text »    PDF »
Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus.
E. M. Clerico, V. M. Cassone, and S. S. Golden (2009)
Microbiology 155, 635-641
   Abstract »    Full Text »    PDF »
Circadian gene expression is resilient to large fluctuations in overall transcription rates.
C. Dibner, D. Sage, M. Unser, C. Bauer, T. d'Eysmond, F. Naef, and U. Schibler (2009)
EMBO J. 28, 123-134
   Abstract »    Full Text »    PDF »
Glucocorticoids and the circadian clock.
T. Dickmeis (2009)
J. Endocrinol. 200, 3-22
   Abstract »    Full Text »    PDF »
Drosophila and Vertebrate Casein Kinase I{delta} Exhibits Evolutionary Conservation of Circadian Function.
J.-Y. Fan, F. Preuss, M. J. Muskus, E. S. Bjes, and J. L. Price (2009)
Genetics 181, 139-152
   Abstract »    Full Text »    PDF »
Control of WHITE COLLAR localization by phosphorylation is a critical step in the circadian negative feedback process.
J. Cha, S.-S. Chang, G. Huang, P. Cheng, and Y. Liu (2008)
EMBO J. 27, 3246-3255
   Abstract »    Full Text »    PDF »
The Role of {beta}-TrCP1 and {beta}-TrCP2 in Circadian Rhythm Generation by Mediating Degradation of Clock Protein PER2.
K. Ohsaki, K. Oishi, Y. Kozono, K. Nakayama, K. I. Nakayama, and N. Ishida (2008)
J. Biochem. 144, 609-618
   Abstract »    Full Text »    PDF »
Structural Insights into a Circadian Oscillator.
C. H. Johnson, M. Egli, and P. L. Stewart (2008)
Science 322, 697-701
   Abstract »    Full Text »    PDF »
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
Y.-I. Kim, G. Dong, C. W. Carruthers Jr, S. S. Golden, and A. LiWang (2008)
PNAS 105, 12825-12830
   Abstract »    Full Text »    PDF »
Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops.
T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell Jr. (2008)
Science 321, 126-129
   Abstract »    Full Text »    PDF »
PERspective on PER phosphorylation.
J. Blau (2008)
Genes & Dev. 22, 1737-1740
   Abstract »    Full Text »    PDF »
Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation.
R. Pattanayek, D. R. Williams, S. Pattanayek, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli (2008)
EMBO J. 27, 1767-1778
   Abstract »    Full Text »    PDF »
Genome Streamlining Results in Loss of Robustness of the Circadian Clock in the Marine Cyanobacterium Prochlorococcus marinus PCC 9511.
J. Holtzendorff, F. Partensky, D. Mella, J.-F. Lennon, W. R. Hess, and L. Garczarek (2008)
J Biol Rhythms 23, 187-199
   Abstract »    PDF »
Lego clocks: building a clock from parts.
M. Brunner, M. J.P. Simons, and M. Merrow (2008)
Genes & Dev. 22, 1422-1426
   Abstract »    Full Text »    PDF »
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Y. Kitayama, T. Nishiwaki, K. Terauchi, and T. Kondo (2008)
Genes & Dev. 22, 1513-1521
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Integrating Circadian Timekeeping with Cellular Physiology.
M. C. Harrisingh and M. N. Nitabach (2008)
Science 320, 879-880
   Abstract »    Full Text »    PDF »
cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker.
J. S. O'Neill, E. S. Maywood, J. E. Chesham, J. S. Takahashi, and M. H. Hastings (2008)
Science 320, 949-953
   Abstract »    Full Text »    PDF »
Proteins Found in a CikA Interaction Assay Link the Circadian Clock, Metabolism, and Cell Division in Synechococcus elongatus.
S. R. Mackey, J.-S. Choi, Y. Kitayama, H. Iwasaki, G. Dong, and S. S. Golden (2008)
J. Bacteriol. 190, 3738-3746
   Abstract »    Full Text »    PDF »
The green yeast uses its plant-like clock to regulate its animal-like tail.
M. Brunner and M. Merrow (2008)
Genes & Dev. 22, 825-831
   Full Text »    PDF »
A systematic forward genetic analysis identified components of the Chlamydomonas circadian system.
T. Matsuo, K. Okamoto, K. Onai, Y. Niwa, K. Shimogawara, and M. Ishiura (2008)
Genes & Dev. 22, 918-930
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clock Gene Expression by Phosphorylation States of KaiC in Cyanobacteria.
Y. Murayama, T. Oyama, and T. Kondo (2008)
J. Bacteriol. 190, 1691-1698
   Abstract »    Full Text »    PDF »
Probing the Relative Importance of Molecular Oscillations in the Circadian Clock.
X. Zheng and A. Sehgal (2008)
Genetics 178, 1147-1155
   Abstract »    Full Text »    PDF »
Casein kinase I{varepsilon} Does Not Rescue double-time Function in Drosophila Despite Evolutionarily Conserved Roles in the Circadian Clock.
T. Sekine, T. Yamaguchi, K. Hamano, M. W. Young, M. Shimoda, and L. Saez (2008)
J Biol Rhythms 23, 3-15
   Abstract »    PDF »
Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop.
G. Huang, S. Chen, S. Li, J. Cha, C. Long, L. Li, Q. He, and Y. Liu (2007)
Genes & Dev. 21, 3283-3295
   Abstract »    Full Text »    PDF »
Drosophila DBT Lacking Protein Kinase Activity Produces Long-Period and Arrhythmic Circadian Behavioral and Molecular Rhythms.
M. J. Muskus, F. Preuss, J.-Y. Fan, E. S. Bjes, and J. L. Price (2007)
Mol. Cell. Biol. 27, 8049-8064
   Abstract »    Full Text »    PDF »
Circadian rhythms of superhelical status of DNA in cyanobacteria.
M. A. Woelfle, Y. Xu, X. Qin, and C. H. Johnson (2007)
PNAS 104, 18819-18824
   Abstract »    Full Text »    PDF »
Intracellular Ca2+ Regulates Free-Running Circadian Clock Oscillation In Vivo.
M. C. Harrisingh, Y. Wu, G. A. Lnenicka, and M. N. Nitabach (2007)
J. Neurosci. 27, 12489-12499
   Abstract »    Full Text »    PDF »
SYSTEMS BIOLOGY: A Clock with a Flip Switch.
A. C. Poon and J. E. Ferrell Jr. (2007)
Science 318, 757-758
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882