Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 308 (5729): 1789-1791

Copyright © 2005 by the American Association for the Advancement of Science

NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription

Patrick Smit,1 John Raedts,1 Vladimir Portyanko,2 Frédéric Debellé,3 Clare Gough,3 Ton Bisseling,1* René Geurts1

Abstract: Rhizobial Nod factors induce in their legume hosts the expression of many genes and set in motion developmental processes leading to root nodule formation. Here we report the identification of the Medicago GRAS-type protein Nodulation signaling pathway 1 (NSP1), which is essential for all known Nod factor–induced changes in gene expression. NSP1 is constitutively expressed, and so it acts as a primary transcriptional regulator mediating all known Nod factor–induced transcriptional responses, and therefore, we named it a Nod factor response factor.

1 Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Wageningen 6703 HA, Netherlands.
2 Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA.
3 Laboratoire des Interactions Plantes-Microorganismes INRA-CNRS, BP27, 31326 Castanet-Tolosan Cedex, France.

* To whom correspondence should be addressed. E-mail: ton.bisseling{at}

Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.
C. Rogers and G. E. D. Oldroyd (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
A Nuclear Factor Y Interacting Protein of the GRAS Family Is Required for Nodule Organogenesis, Infection Thread Progression, and Lateral Root Growth.
M. Battaglia, C. Ripodas, J. Clua, M. Baudin, O. M. Aguilar, A. Niebel, M. E. Zanetti, and F. A. Blanco (2014)
Plant Physiology 164, 1430-1442
   Abstract »    Full Text »    PDF »
The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection.
P. Laporte, A. Lepage, J. Fournier, O. Catrice, S. Moreau, M.-F. Jardinaud, J.-H. Mun, E. Larrainzar, D. R. Cook, P. Gamas, et al. (2014)
J. Exp. Bot. 65, 481-494
   Abstract »    Full Text »    PDF »
Lotus japonicus Cytokinin Receptors Work Partially Redundantly to Mediate Nodule Formation.
M. Held, H. Hou, M. Miri, C. Huynh, L. Ross, M. S. Hossain, S. Sato, S. Tabata, J. Perry, T. L. Wang, et al. (2014)
PLANT CELL 26, 678-694
   Abstract »    Full Text »    PDF »
Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling.
J. B. Miller, A. Pratap, A. Miyahara, L. Zhou, S. Bornemann, R. J. Morris, and G. E. D. Oldroyd (2013)
PLANT CELL 25, 5053-5066
   Abstract »    Full Text »    PDF »
Nuclear Calcium Signaling in Plants.
M. Charpentier and G. E. D. Oldroyd (2013)
Plant Physiology 163, 496-503
   Full Text »    PDF »
The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula.
S. Sinharoy, I. Torres-Jerez, K. Bandyopadhyay, A. Kereszt, C. I. Pislariu, J. Nakashima, V. A. Benedito, E. Kondorosi, and M. K. Udvardi (2013)
PLANT CELL 25, 3584-3601
   Abstract »    Full Text »    PDF »
Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling.
N. J. Roberts, G. Morieri, G. Kalsi, A. Rose, J. Stiller, A. Edwards, F. Xie, P. M. Gresshoff, G. E. D. Oldroyd, J. A. Downie, et al. (2013)
Plant Physiology 161, 556-567
   Abstract »    Full Text »    PDF »
OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice.
B. Shi, L. Ni, A. Zhang, J. Cao, H. Zhang, T. Qin, M. Tan, J. Zhang, and M. Jiang (2012)
Mol Plant 5, 1359-1374
   Abstract »    Full Text »    PDF »
Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms.
D. Zhang, L. M. Iyer, and L. Aravind (2012)
Bioinformatics 28, 2407-2411
   Abstract »    Full Text »    PDF »
Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula.
P. Rival, F. de Billy, J.-J. Bono, C. Gough, C. Rosenberg, and S. Bensmihen (2012)
Development 139, 3383-3391
   Abstract »    Full Text »    PDF »
Rapid Phosphoproteomic and Transcriptomic Changes in the Rhizobia-legume Symbiosis.
C. M. Rose, M. Venkateshwaran, J. D. Volkening, P. A. Grimsrud, J. Maeda, D. J. Bailey, K. Park, M. Howes-Podoll, D. den Os, L. H. Yeun, et al. (2012)
Mol. Cell. Proteomics 11, 724-744
   Abstract »    Full Text »    PDF »
Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize.
F. Ma, R. Lu, H. Liu, B. Shi, J. Zhang, M. Tan, A. Zhang, and M. Jiang (2012)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Transcriptional Responses toward Diffusible Signals from Symbiotic Microbes Reveal MtNFP- and MtDMI3-Dependent Reprogramming of Host Gene Expression by Arbuscular Mycorrhizal Fungal Lipochitooligosaccharides.
L. F. Czaja, C. Hogekamp, P. Lamm, F. Maillet, E. A. Martinez, E. Samain, J. Denarie, H. Kuster, and N. Hohnjec (2012)
Plant Physiology 159, 1671-1685
   Abstract »    Full Text »    PDF »
A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation.
C. I. Pislariu, J. D. Murray, J. Wen, V. Cosson, R. R. D. Muni, M. Wang, V. A. Benedito, A. Andriankaja, X. Cheng, I. T. Jerez, et al. (2012)
Plant Physiology 159, 1686-1699
   Abstract »    Full Text »    PDF »
The Small GTPase ROP6 Interacts with NFR5 and Is Involved in Nodule Formation in Lotus japonicus.
D. Ke, Q. Fang, C. Chen, H. Zhu, T. Chen, X. Chang, S. Yuan, H. Kang, L. Ma, Z. Hong, et al. (2012)
Plant Physiology 159, 131-143
   Abstract »    Full Text »    PDF »
Multiple Domains in MtENOD8 Protein Including the Signal Peptide Target It to The Symbiosome.
M. H. Meckfessel, E. B. Blancaflor, M. Plunkett, Q. Dong, and R. Dickstein (2012)
Plant Physiology 159, 299-310
   Abstract »    Full Text »    PDF »
WUSCHEL-RELATED HOMEOBOX5 Gene Expression and Interaction of CLE Peptides with Components of the Systemic Control Add Two Pieces to the Puzzle of Autoregulation of Nodulation.
M. A. Osipova, V. Mortier, K. N. Demchenko, V. E. Tsyganov, I. A. Tikhonovich, L. A. Lutova, E. A. Dolgikh, and S. Goormachtig (2012)
Plant Physiology 158, 1329-1341
   Abstract »    Full Text »    PDF »
A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators.
R. H. M. Op den Camp, S. De Mita, A. Lillo, Q. Cao, E. Limpens, T. Bisseling, and R. Geurts (2011)
Plant Physiology 157, 2013-2022
   Abstract »    Full Text »    PDF »
Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread.
C. Hogekamp, D. Arndt, P. A. Pereira, J. D. Becker, N. Hohnjec, and H. Kuster (2011)
Plant Physiology 157, 2023-2043
   Abstract »    Full Text »    PDF »
Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2.
W. Liu, W. Kohlen, A. Lillo, R. Op den Camp, S. Ivanov, M. Hartog, E. Limpens, M. Jamil, C. Smaczniak, K. Kaufmann, et al. (2011)
PLANT CELL 23, 3853-3865
   Abstract »    Full Text »    PDF »
Nuclear membranes control symbiotic calcium signaling of legumes.
W. Capoen, J. Sun, D. Wysham, M. S. Otegui, M. Venkateshwaran, S. Hirsch, H. Miwa, J. A. Downie, R. J. Morris, J.-M. Ane, et al. (2011)
PNAS 108, 14348-14353
   Abstract »    Full Text »    PDF »
Symbiotic Rhizobia Bacteria Trigger a Change in Localization and Dynamics of the Medicago truncatula Receptor Kinase LYK3.
C. H. Haney, B. K. Riely, D. M. Tricoli, D. R. Cook, D. W. Ehrhardt, and S. R. Long (2011)
PLANT CELL 23, 2774-2787
   Abstract »    Full Text »    PDF »
A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in Lotus japonicus.
H. Kang, H. Zhu, X. Chu, Z. Yang, S. Yuan, D. Yu, C. Wang, Z. Hong, and Z. Zhang (2011)
Plant Physiology 155, 1312-1324
   Abstract »    Full Text »    PDF »
A holistic view of nitrogen acquisition in plants.
T. Kraiser, D. E. Gras, A. G. Gutierrez, B. Gonzalez, and R. A. Gutierrez (2011)
J. Exp. Bot. 62, 1455-1466
   Abstract »    Full Text »    PDF »
A C Subunit of the Plant Nuclear Factor NF-Y Required for Rhizobial Infection and Nodule Development Affects Partner Selection in the Common Bean-Rhizobium etli Symbiosis.
M. E. Zanetti, F. A. Blanco, M. P. Beker, M. Battaglia, and O. M. Aguilar (2010)
PLANT CELL 22, 4142-4157
   Abstract »    Full Text »    PDF »
Transcription Factor MtATB2: About Nodulation, Sucrose and Senescence.
K. D'haeseleer, A. De Keyser, S. Goormachtig, and M. Holsters (2010)
Plant Cell Physiol. 51, 1416-1424
   Abstract »    Full Text »    PDF »
plenty, a Novel Hypernodulation Mutant in Lotus japonicus.
C. Yoshida, S. Funayama-Noguchi, and M. Kawaguchi (2010)
Plant Cell Physiol. 51, 1425-1435
   Abstract »    Full Text »    PDF »
Function of GRAS Proteins in Root Nodule Symbiosis is Retained in Homologs of a Non-Legume, Rice.
K. Yokota, T. Soyano, H. Kouchi, and M. Hayashi (2010)
Plant Cell Physiol. 51, 1436-1442
   Abstract »    Full Text »    PDF »
Cross-Talk between ROS and Calcium in Regulation of Nuclear Activities.
C. Mazars, P. Thuleau, O. Lamotte, and S. Bourque (2010)
Mol Plant 3, 706-718
   Abstract »    Full Text »    PDF »
NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development.
M. Groth, N. Takeda, J. Perry, H. Uchida, S. Draxl, A. Brachmann, S. Sato, S. Tabata, M. Kawaguchi, T. L. Wang, et al. (2010)
PLANT CELL 22, 2509-2526
   Abstract »    Full Text »    PDF »
CLE Peptides Control Medicago truncatula Nodulation Locally and Systemically.
V. Mortier, G. Den Herder, R. Whitford, W. Van de Velde, S. Rombauts, K. D'haeseleer, M. Holsters, and S. Goormachtig (2010)
Plant Physiology 153, 222-237
   Abstract »    Full Text »    PDF »
Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection.
M. Libault, A. Farmer, L. Brechenmacher, J. Drnevich, R. J. Langley, D. D. Bilgin, O. Radwan, D. J. Neece, S. J. Clough, G. D. May, et al. (2010)
Plant Physiology 152, 541-552
   Abstract »    Full Text »    PDF »
Legume Transcription Factor Genes: What Makes Legumes So Special?.
M. Libault, T. Joshi, V. A. Benedito, D. Xu, M. K. Udvardi, and G. Stacey (2009)
Plant Physiology 151, 991-1001
   Full Text »    PDF »
A Nuclear-Targeted Cameleon Demonstrates Intranuclear Ca2+ Spiking in Medicago truncatula Root Hairs in Response to Rhizobial Nodulation Factors.
B. J. Sieberer, M. Chabaud, A. C. Timmers, A. Monin, J. Fournier, and D. G. Barker (2009)
Plant Physiology 151, 1197-1206
   Abstract »    Full Text »    PDF »
Large-Scale Analysis of Putative Soybean Regulatory Gene Expression Identifies a Myb Gene Involved in Soybean Nodule Development.
M. Libault, T. Joshi, K. Takahashi, A. Hurley-Sommer, K. Puricelli, S. Blake, R. E. Finger, C. G. Taylor, D. Xu, H. T. Nguyen, et al. (2009)
Plant Physiology 151, 1207-1220
   Abstract »    Full Text »    PDF »
LIN, a Novel Type of U-Box/WD40 Protein, Controls Early Infection by Rhizobia in Legumes.
E. Kiss, B. Olah, P. Kalo, M. Morales, A. B. Heckmann, A. Borbola, A. Lozsa, K. Kontar, P. Middleton, J. A. Downie, et al. (2009)
Plant Physiology 151, 1239-1249
   Abstract »    Full Text »    PDF »
Medicago N2-Fixing Symbiosomes Acquire the Endocytic Identity Marker Rab7 but Delay the Acquisition of Vacuolar Identity.
E. Limpens, S. Ivanov, W. van Esse, G. Voets, E. Fedorova, and T. Bisseling (2009)
PLANT CELL 21, 2811-2828
   Abstract »    Full Text »    PDF »
A Small GTPase of the Rab Family Is Required for Root Hair Formation and Preinfection Stages of the Common Bean-Rhizobium Symbiotic Association.
F. A. Blanco, E. Peltzer Meschini, M. E. Zanetti, and O. M. Aguilar (2009)
PLANT CELL 21, 2797-2810
   Abstract »    Full Text »    PDF »
Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of Sesbania rostrata.
W. Capoen, J. Den Herder, J. Sun, C. Verplancke, A. De Keyser, R. De Rycke, S. Goormachtig, G. Oldroyd, and M. Holsters (2009)
PLANT CELL 21, 1526-1540
   Abstract »    Full Text »    PDF »
GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula.
S. Hirsch, J. Kim, A. Munoz, A. B. Heckmann, J. A. Downie, and G. E.D. Oldroyd (2009)
PLANT CELL 21, 545-557
   Abstract »    Full Text »    PDF »
Rearrangement of Actin Cytoskeleton Mediates Invasion of Lotus japonicus Roots by Mesorhizobium loti.
K. Yokota, E. Fukai, L. H. Madsen, A. Jurkiewicz, P. Rueda, S. Radutoiu, M. Held, M. S. Hossain, K. Szczyglowski, G. Morieri, et al. (2009)
PLANT CELL 21, 267-284
   Abstract »    Full Text »    PDF »
Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants.
C. Chen, C. Fan, M. Gao, and H. Zhu (2009)
Plant Physiology 149, 306-317
   Abstract »    Full Text »    PDF »
CYCLOPS, a mediator of symbiotic intracellular accommodation.
K. Yano, S. Yoshida, J. Muller, S. Singh, M. Banba, K. Vickers, K. Markmann, C. White, B. Schuller, S. Sato, et al. (2008)
PNAS 105, 20540-20545
   Abstract »    Full Text »    PDF »
How CYCLOPS keeps an eye on plant symbiosis.
W. Capoen and G. Oldroyd (2008)
PNAS 105, 20053-20054
   Full Text »    PDF »
De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis.
M. Crespi and F. Frugier (2008)
Science Signaling 1, re11
   Abstract »    Full Text »    PDF »
Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in Medicago truncatula.
Y. Ding, P. Kalo, C. Yendrek, J. Sun, Y. Liang, J. F. Marsh, J. M. Harris, and G. E.D. Oldroyd (2008)
PLANT CELL 20, 2681-2695
   Abstract »    Full Text »    PDF »
EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula.
T. Vernie, S. Moreau, F. de Billy, J. Plet, J.-P. Combier, C. Rogers, G. Oldroyd, F. Frugier, A. Niebel, and P. Gamas (2008)
PLANT CELL 20, 2696-2713
   Abstract »    Full Text »    PDF »
A Novel ARID DNA-Binding Protein Interacts with SymRK and Is Expressed during Early Nodule Development in Lotus japonicus.
H. Zhu, T. Chen, M. Zhu, Q. Fang, H. Kang, Z. Hong, and Z. Zhang (2008)
Plant Physiology 148, 337-347
   Abstract »    Full Text »    PDF »
Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes.
S. Kosuta, S. Hazledine, J. Sun, H. Miwa, R. J. Morris, J. A. Downie, and G. E. D. Oldroyd (2008)
PNAS 105, 9823-9828
   Abstract »    Full Text »    PDF »
Systemic Signaling of the Plant Nitrogen Status Triggers Specific Transcriptome Responses Depending on the Nitrogen Source in Medicago truncatula.
S. Ruffel, S. Freixes, S. Balzergue, P. Tillard, C. Jeudy, M. L. Martin-Magniette, M. J. van der Merwe, K. Kakar, J. Gouzy, A. R. Fernie, et al. (2008)
Plant Physiology 146, 2020-2035
   Abstract »    Full Text »    PDF »
3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in Medicago truncatula.
Z. Kevei, G. Lougnon, P. Mergaert, G. V. Horvath, A. Kereszt, D. Jayaraman, N. Zaman, F. Marcel, K. Regulski, G. B. Kiss, et al. (2007)
PLANT CELL 19, 3974-3989
   Abstract »    Full Text »    PDF »
Antisense Repression of the Medicago truncatula Nodule-Enhanced Sucrose Synthase Leads to a Handicapped Nitrogen Fixation Mirrored by Specific Alterations in the Symbiotic Transcriptome and Metabolome.
M. C. Baier, A. Barsch, H. Kuster, and N. Hohnjec (2007)
Plant Physiology 145, 1600-1618
   Abstract »    Full Text »    PDF »
Fungal Symbiosis in Rice Requires an Ortholog of a Legume Common Symbiosis Gene Encoding a Ca2+/Calmodulin-Dependent Protein Kinase.
C. Chen, M. Gao, J. Liu, and H. Zhu (2007)
Plant Physiology 145, 1619-1628
   Abstract »    Full Text »    PDF »
Bacterial symbionts induce a FUT2-dependent fucosylated niche on colonic epithelium via ERK and JNK signaling.
D. Meng, D. S. Newburg, C. Young, A. Baker, S. L. Tonkonogy, R. B. Sartor, W. A. Walker, and N. N. Nanthakumar (2007)
Am J Physiol Gastrointest Liver Physiol 293, G780-G787
   Abstract »    Full Text »    PDF »
AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif.
A. Andriankaja, A. Boisson-Dernier, L. Frances, L. Sauviac, A. Jauneau, D. G. Barker, and F. de Carvalho-Niebel (2007)
PLANT CELL 19, 2866-2885
   Abstract »    Full Text »    PDF »
Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling.
P. Smit, E. Limpens, R. Geurts, E. Fedorova, E. Dolgikh, C. Gough, and T. Bisseling (2007)
Plant Physiology 145, 183-191
   Abstract »    Full Text »    PDF »
Comparative Transcriptome Analysis Reveals Common and Specific Tags for Root Hair and Crack-Entry Invasion in Sesbania rostrata.
W. Capoen, J. Den Herder, S. Rombauts, J. De Gussem, A. De Keyser, M. Holsters, and S. Goormachtig (2007)
Plant Physiology 144, 1878-1889
   Abstract »    Full Text »    PDF »
Legume Transcription Factors: Global Regulators of Plant Development and Response to the Environment.
M. K. Udvardi, K. Kakar, M. Wandrey, O. Montanari, J. Murray, A. Andriankaja, J.-Y. Zhang, V. Benedito, J. M.I. Hofer, F. Chueng, et al. (2007)
Plant Physiology 144, 538-549
   Full Text »    PDF »
Recent Advances in Legume-Microbe Interactions: Recognition, Defense Response, and Symbiosis from a Genomic Perspective.
D. A. Samac and M. A. Graham (2007)
Plant Physiology 144, 582-587
   Full Text »    PDF »
Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species.
S. Peleg-Grossman, H. Volpin, and A. Levine (2007)
J. Exp. Bot. 58, 1637-1649
   Abstract »    Full Text »    PDF »
Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase.
J. F. Marsh, A. Rakocevic, R. M. Mitra, L. Brocard, J. Sun, A. Eschstruth, S. R. Long, M. Schultze, P. Ratet, and G. E.D. Oldroyd (2007)
Plant Physiology 144, 324-335
   Abstract »    Full Text »    PDF »
An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction.
P. H. Middleton, J. Jakab, R. V. Penmetsa, C. G. Starker, J. Doll, P. Kalo, R. Prabhu, J. F. Marsh, R. M. Mitra, A. Kereszt, et al. (2007)
PLANT CELL 19, 1221-1234
   Abstract »    Full Text »    PDF »
NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus.
K. Saito, M. Yoshikawa, K. Yano, H. Miwa, H. Uchida, E. Asamizu, S. Sato, S. Tabata, H. Imaizumi-Anraku, Y. Umehara, et al. (2007)
PLANT CELL 19, 610-624
   Abstract »    Full Text »    PDF »
A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis.
J. D. Murray, B. J. Karas, S. Sato, S. Tabata, L. Amyot, and K. Szczyglowski (2007)
Science 315, 101-104
   Abstract »    Full Text »    PDF »
Lotus japonicus Nodulation Requires Two GRAS Domain Regulators, One of Which Is Functionally Conserved in a Non-Legume.
A. B. Heckmann, F. Lombardo, H. Miwa, J. A. Perry, S. Bunnewell, M. Parniske, T. L. Wang, and J. A. Downie (2006)
Plant Physiology 142, 1739-1750
   Abstract »    Full Text »    PDF »
The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes.
J.-F. Arrighi, A. Barre, B. Ben Amor, A. Bersoult, L. C. Soriano, R. Mirabella, F. de Carvalho-Niebel, E.-P. Journet, M. Gherardi, T. Huguet, et al. (2006)
Plant Physiology 142, 265-279
   Abstract »    Full Text »    PDF »
Tracing Nonlegume Orthologs of Legume Genes Required for Nodulation and Arbuscular Mycorrhizal Symbioses.
H. Zhu, B. K. Riely, N. J. Burns, and J.-M. Ane (2006)
Genetics 172, 2491-2499
   Abstract »    Full Text »    PDF »
Nitrogen Fixation Mutants of Medicago truncatula Fail to Support Plant and Bacterial Symbiotic Gene Expression.
C. G. Starker, A. L. Parra-Colmenares, L. Smith, R. M. Mitra, and S. R. Long (2006)
Plant Physiology 140, 671-680
   Abstract »    Full Text »    PDF »
Transcript Analysis of Early Nodulation Events in Medicago truncatula.
D. P. Lohar, N. Sharopova, G. Endre, S. Penuela, D. Samac, C. Town, K. A.T. Silverstein, and K. A. VandenBosch (2006)
Plant Physiology 140, 221-234
   Abstract »    Full Text »    PDF »
Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators.
P. Kalo, C. Gleason, A. Edwards, J. Marsh, R. M. Mitra, S. Hirsch, J. Jakab, S. Sims, S. R. Long, J. Rogers, et al. (2005)
Science 308, 1786-1789
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882