Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 308 (5730): 1923-1927

Copyright © 2005 by the American Association for the Advancement of Science

Dependence of Olfactory Bulb Neurogenesis on Prokineticin 2 Signaling

Kwan L. Ng, Jia-Da Li, Michelle Y. Cheng, Frances M. Leslie, Alex G. Lee, Qun-Yong Zhou*

Abstract: Neurogenesis persists in the olfactory bulb (OB) of the adult mammalian brain. New interneurons are continually added to the OB from the subventricular zone (SVZ) via the rostral migratory stream (RMS). Here we show that secreted prokineticin 2 (PK2) functions as a chemoattractant for SVZ-derived neuronal progenitors. Within the OB, PK2 may also act as a detachment signal for chain-migrating progenitors arriving from the RMS. PK2 deficiency in mice leads to a marked reduction in OB size, loss of normal OB architecture, and the accumulation of neuronal progenitors in the RMS. These findings define an essential role for G protein–coupled PK2 signaling in postnatal and adult OB neurogenesis.

Department of Pharmacology, University of California–Irvine (UCI), Irvine, CA 92697, USA.

* To whom correspondence should be addressed. E-mail: qzhou{at}uci.edu

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Plexin-B2 Regulates the Proliferation and Migration of Neuroblasts in the Postnatal and Adult Subventricular Zone.
B. Saha, A. R. Ypsilanti, C. Boutin, H. Cremer, and A. Chedotal (2012)
J. Neurosci. 32, 16892-16905
   Abstract »    Full Text »    PDF »
An ancient founder mutation in PROKR2 impairs human reproduction.
M. Avbelj Stefanija, M. Jeanpierre, G. P. Sykiotis, J. Young, R. Quinton, A. P. Abreu, L. Plummer, M. G. Au, R. Balasubramanian, A. A. Dwyer, et al. (2012)
Hum. Mol. Genet. 21, 4314-4324
   Abstract »    Full Text »    PDF »
Subventricular Zone-Derived Neuroblasts Use Vasculature as a Scaffold to Migrate Radially to the Cortex in Neonatal Mice.
C. Le Magueresse, J. Alfonso, C. Bark, M. Eliava, S. Khrulev, and H. Monyer (2012)
Cereb Cortex 22, 2285-2296
   Abstract »    Full Text »    PDF »
SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development.
J. Young, C. Metay, J. Bouligand, B. Tou, B. Francou, L. Maione, L. Tosca, J. Sarfati, F. Brioude, B. Esteva, et al. (2012)
Hum. Reprod. 27, 1460-1465
   Abstract »    Full Text »    PDF »
Prokineticin 2 is an endangering mediator of cerebral ischemic injury.
M. Y. Cheng, A. G. Lee, C. Culbertson, G. Sun, R. K. Talati, N. C. Manley, X. Li, H. Zhao, D. M. Lyons, Q.-Y. Zhou, et al. (2012)
PNAS 109, 5475-5480
   Abstract »    Full Text »    PDF »
Neuronal regeneration in a zebrafish model of adult brain injury.
N. Kishimoto, K. Shimizu, and K. Sawamoto (2012)
Dis. Model. Mech. 5, 200-209
   Abstract »    Full Text »    PDF »
Abnormal Neuronal Migration Changes the Fate of Developing Neurons in the Postnatal Olfactory Bulb.
R. Belvindrah, A. Nissant, and P.-M. Lledo (2011)
J. Neurosci. 31, 7551-7562
   Abstract »    Full Text »    PDF »
Disease-causing Mutation in PKR2 Receptor Reveals a Critical Role of Positive Charges in the Second Intracellular Loop for G-protein Coupling and Receptor Trafficking.
Z. Peng, Y. Tang, H. Luo, F. Jiang, J. Yang, L. Sun, and J.-D. Li (2011)
J. Biol. Chem. 286, 16615-16622
   Abstract »    Full Text »    PDF »
Deciphering Genetic Disease in the Genomic Era: The Model of GnRH Deficiency.
G. P. Sykiotis, N. Pitteloud, S. B. Seminara, U. B. Kaiser, and W. F. Crowley Jr. (2010)
Science Translational Medicine 2, 32rv2
   Full Text »    PDF »
Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway.
I. H. Cook, J. Evans, D. Maldonado-Perez, H. O. Critchley, K. J. Sales, and H. N. Jabbour (2010)
Mol. Hum. Reprod. 16, 158-169
   Abstract »    Full Text »    PDF »
Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis and fenestration.
C. Guilini, K. Urayama, G. Turkeri, D. B. Dedeoglu, H. Kurose, N. Messaddeq, and C. G. Nebigil (2010)
Am J Physiol Heart Circ Physiol 298, H844-H852
   Abstract »    Full Text »    PDF »
Human Genetic Disorders of Axon Guidance.
E. C. Engle (2010)
Cold Spring Harb Perspect Biol 2, a001784
   Abstract »    Full Text »    PDF »
Prokineticin 2 Is a Hypothalamic Neuropeptide That Potently Inhibits Food Intake.
J. V. Gardiner, A. Bataveljic, N. A. Patel, G. A. Bewick, D. Roy, D. Campbell, H. C. Greenwood, K. G. Murphy, S. Hameed, P. H. Jethwa, et al. (2010)
Diabetes 59, 397-406
   Abstract »    Full Text »    PDF »
Characterization and Regulation of Bv8 in Human Blood Cells.
C. Zhong, X. Qu, M. Tan, Y. G. Meng, and N. Ferrara (2009)
Clin. Cancer Res. 15, 2675-2684
   Abstract »    Full Text »    PDF »
Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling.
M. Snapyan, M. Lemasson, M. S. Brill, M. Blais, M. Massouh, J. Ninkovic, C. Gravel, F. Berthod, M. Gotz, P. A. Barker, et al. (2009)
J. Neurosci. 29, 4172-4188
   Abstract »    Full Text »    PDF »
p27KIP1 Regulates Neurogenesis in the Rostral Migratory Stream and Olfactory Bulb of the Postnatal Mouse.
X. Li, X. Tang, B. Jablonska, A. Aguirre, V. Gallo, and M. B. Luskin (2009)
J. Neurosci. 29, 2902-2914
   Abstract »    Full Text »    PDF »
PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity.
C. Monnier, C. Dode, L. Fabre, L. Teixeira, G. Labesse, J.-P. Pin, J.-P. Hardelin, and P. Rondard (2009)
Hum. Mol. Genet. 18, 75-81
   Abstract »    Full Text »    PDF »
Prokineticins and the heart: diverging actions elicited by signalling through prokineticin receptor-1 or -2.
H. Attramadal (2009)
Cardiovasc Res 81, 3-4
   Full Text »    PDF »
Transgenic myocardial overexpression of prokineticin receptor-2 (GPR73b) induces hypertrophy and capillary vessel leakage.
K. Urayama, D. B. Dedeoglu, C. Guilini, S. Frantz, G. Ertl, N. Messaddeq, and C. G. Nebigil (2009)
Cardiovasc Res 81, 28-37
   Abstract »    Full Text »    PDF »
Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: Case Report.
A. A. Sinisi, R. Asci, G. Bellastella, L. Maione, D. Esposito, A. Elefante, A. De Bellis, A. Bellastella, and A. Iolascon (2008)
Hum. Reprod. 23, 2380-2384
   Abstract »    Full Text »    PDF »
Hepatocyte Growth Factor Regulates Migration of Olfactory Interneuron Precursors in the Rostral Migratory Stream through Met-Grb2 Coupling.
D. Garzotto, P. Giacobini, T. Crepaldi, A. Fasolo, and S. De Marchis (2008)
J. Neurosci. 28, 5901-5909
   Abstract »    Full Text »    PDF »
Loss of prokineticin receptor 2 signaling predisposes mice to torpor.
P. H. Jethwa, H. I'Anson, A. Warner, H. M. Prosser, M. H. Hastings, E. S. Maywood, and F. J. P. Ebling (2008)
Am J Physiol Regulatory Integrative Comp Physiol 294, R1968-R1979
   Abstract »    Full Text »    PDF »
Prokineticin Receptor-1 Induces Neovascularization and Epicardial-Derived Progenitor Cell Differentiation.
K. Urayama, C. Guilini, G. Turkeri, S. Takir, H. Kurose, N. Messaddeq, A. Dierich, and C. G. Nebigil (2008)
Arterioscler Thromb Vasc Biol 28, 841-849
   Abstract »    Full Text »    PDF »
Mitogenic functions of endocrine gland-derived vascular endothelial growth factor and Bombina variegata 8 on steroidogenic adrenocortical cells.
M. Keramidas, C. Faudot, A. Cibiel, J.-J. Feige, and M. Thomas (2008)
J. Endocrinol. 196, 473-482
   Abstract »    Full Text »    PDF »
Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression.
F. Shojaei, M. Singh, J. D. Thompson, and N. Ferrara (2008)
PNAS 105, 2640-2645
   Abstract »    Full Text »    PDF »
Cyclin-Dependent Kinase 5 Is Required for Control of Neuroblast Migration in the Postnatal Subventricular Zone.
Y. Hirota, T. Ohshima, N. Kaneko, M. Ikeda, T. Iwasato, A. B. Kulkarni, K. Mikoshiba, H. Okano, and K. Sawamoto (2007)
J. Neurosci. 27, 12829-12838
   Abstract »    Full Text »    PDF »
Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism.
N. Pitteloud, C. Zhang, D. Pignatelli, J.-D. Li, T. Raivio, L. W. Cole, L. Plummer, E. E. Jacobson-Dickman, P. L. Mellon, Q.-Y. Zhou, et al. (2007)
PNAS 104, 17447-17452
   Abstract »    Full Text »    PDF »
The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis.
K. Urayama, C. Guilini, N. Messaddeq, K. Hu, M. Steenman, H. Kurose, G. Ert, and C. G. Nebigil (2007)
FASEB J 21, 2980-2993
   Abstract »    Full Text »    PDF »
Blood Vessels Form a Scaffold for Neuroblast Migration in the Adult Olfactory Bulb.
S. Bovetti, Y.-C. Hsieh, P. Bovolin, I. Perroteau, T. Kazunori, and A. C. Puche (2007)
J. Neurosci. 27, 5976-5980
   Abstract »    Full Text »    PDF »
Dlx-Dependent and -Independent Regulation of Olfactory Bulb Interneuron Differentiation.
J. E. Long, S. Garel, M. Alvarez-Dolado, K. Yoshikawa, N. Osumi, A. Alvarez-Buylla, and J. L. R. Rubenstein (2007)
J. Neurosci. 27, 3230-3243
   Abstract »    Full Text »    PDF »
Prokineticin 2 Is a Target Gene of Proneural Basic Helix-Loop-Helix Factors for Olfactory Bulb Neurogenesis.
C. Zhang, K. L. Ng, J.-D. Li, F. He, D. J. Anderson, Y. E. Sun, and Q.-Y. Zhou (2007)
J. Biol. Chem. 282, 6917-6921
   Abstract »    Full Text »    PDF »
{beta}1 Integrins Control the Formation of Cell Chains in the Adult Rostral Migratory Stream.
R. Belvindrah, S. Hankel, J. Walker, B. L. Patton, and U. Muller (2007)
J. Neurosci. 27, 2704-2717
   Abstract »    Full Text »    PDF »
Implications of Endocrine Gland-Derived Vascular Endothelial Growth Factor/Prokineticin-1 Signaling in Human Neuroblastoma Progression.
E. S.W. Ngan, F. Y.L. Sit, K. L. Lee, X. Miao, Z. Yuan, W. Wang, J. M. Nicholls, K. K.Y. Wong, M. Garcia-Barcelo, V. C.H. Lui, et al. (2007)
Clin. Cancer Res. 13, 868-875
   Abstract »    Full Text »    PDF »
Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei.
H. M. Prosser, A. Bradley, J. E. Chesham, F. J. P. Ebling, M. H. Hastings, and E. S. Maywood (2007)
PNAS 104, 648-653
   Abstract »    Full Text »    PDF »
Attenuated Circadian Rhythms in Mice Lacking the Prokineticin 2 Gene..
J.-D. Li, W.-P. Hu, L. Boehmer, M. Y. Cheng, A. G. Lee, A. Jilek, J. M. Siegel, and Q.-Y. Zhou (2006)
J. Neurosci. 26, 11615-11623
   Abstract »    Full Text »    PDF »
Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2..
S.-i. Matsumoto, C. Yamazaki, K.-h. Masumoto, M. Nagano, M. Naito, T. Soga, H. Hiyama, M. Matsumoto, J. Takasaki, M. Kamohara, et al. (2006)
PNAS 103, 4140-4145
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882