Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 308 (5730): 1927-1930

Copyright © 2005 by the American Association for the Advancement of Science

GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina

Joon Kim,1,2 Hsiao-Huei Wu,1,2* Arthur D. Lander,2,3 Karen M. Lyons,4 Martin M. Matzuk,5 Anne L. Calof1,2{dagger}

Abstract: The orderly generation of cell types in the developing retina is thought to be regulated by changes in the competence of multipotent progenitors. Here, we show that a secreted factor, growth and differentiation factor 11 (GDF11), controls the numbers of retinal ganglion cells (RGCs), as well as amacrine and photoreceptor cells, that form during development. GDF11 does not affect proliferation of progenitors—a major mode of GDF11 action in other tissues—but instead controls duration of expression of Math5, a gene that confers competence for RGC genesis, in progenitor cells. Thus, GDF11 governs the temporal windows during which multipotent progenitors retain competence to produce distinct neural progeny.

1 Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
2 Developmental Biology Center, University of California, Irvine, CA 92697, USA.
3 Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.
4 Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
5 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

* Present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.

{dagger} To whom correspondence should be addressed. Email: alcalof{at}

Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2.
Y.-S. Lee and S.-J. Lee (2013)
PNAS 110, E3713-E3722
   Abstract »    Full Text »    PDF »
Through Thick and Thin: A Circulating Growth Factor Inhibits Age-Related Cardiac Hypertrophy.
A. C. McPherron (2013)
Circ. Res. 113, 487-491
   Full Text »    PDF »
Lhx2 Balances Progenitor Maintenance with Neurogenic Output and Promotes Competence State Progression in the Developing Retina.
P. J. Gordon, S. Yun, A. M. Clark, E. S. Monuki, L. C. Murtaugh, and E. M. Levine (2013)
J. Neurosci. 33, 12197-12207
   Abstract »    Full Text »    PDF »
Sma- and Mad-related Protein 7 (Smad7) Is Required for Embryonic Eye Development in the Mouse.
R. Zhang, H. Huang, P. Cao, Z. Wang, Y. Chen, and Y. Pan (2013)
J. Biol. Chem. 288, 10275-10285
   Abstract »    Full Text »    PDF »
Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies.
M. Asai-Coakwell, L. March, X. H. Dai, M. DuVal, I. Lopez, C. R. French, J. Famulski, E. De Baere, P. J. Francis, P. Sundaresan, et al. (2013)
Hum. Mol. Genet. 22, 1432-1442
   Abstract »    Full Text »    PDF »
Distinct Neurogenic Potential in the Retinal Margin and the Pars Plana of Mammalian Eye.
T. Kiyama, H. Li, M. Gupta, Y.-P. Lin, A. Z. Chuang, D. C. Otteson, and S. W. Wang (2012)
J. Neurosci. 32, 12797-12807
   Abstract »    Full Text »    PDF »
Pten coordinates retinal neurogenesis by regulating Notch signalling.
H. S. Jo, K. H. Kang, C. O. Joe, and J. W. Kim (2012)
EMBO J. 31, 817-828
   Abstract »    Full Text »    PDF »
Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate.
K. K. Gokoffski, H.-H. Wu, C. L. Beites, J. Kim, E. J. Kim, M. M. Matzuk, J. E. Johnson, A. D. Lander, and A. L. Calof (2011)
Development 138, 4131-4142
   Abstract »    Full Text »    PDF »
BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch.
A. Quillien, B. Blanco-Sanchez, C. Halluin, J. C. Moore, N. D. Lawson, P. Blader, and E. Cau (2011)
Development 138, 2293-2302
   Abstract »    Full Text »    PDF »
Smad4 Is Required Predominantly in the Developmental Processes Dependent on the BMP Branch of the TGF-{beta} Signaling System in the Embryonic Mouse Retina.
D. Murali, M. Kawaguchi-Niida, C.-X. Deng, and Y. Furuta (2011)
Invest. Ophthalmol. Vis. Sci. 52, 2930-2937
   Abstract »    Full Text »    PDF »
Gdf11 Facilitates Temporal Progression of Neurogenesis in the Developing Spinal Cord.
Y. Shi and J.-P. Liu (2011)
J. Neurosci. 31, 883-893
   Abstract »    Full Text »    PDF »
Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions.
F. L. A. F. Gomes, G. Zhang, F. Carbonell, J. A. Correa, W. A. Harris, B. D. Simons, and M. Cayouette (2011)
Development 138, 227-235
   Abstract »    Full Text »    PDF »
A Role for FE65 in Controlling GnRH-1 Neurogenesis.
P. E. Forni, M. Fornaro, S. Guenette, and S. Wray (2011)
J. Neurosci. 31, 480-491
   Abstract »    Full Text »    PDF »
The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche.
K. L. Cerveny, F. Cavodeassi, K. J. Turner, T. A. de Jong-Curtain, J. K. Heath, and S. W. Wilson (2010)
Development 137, 2107-2115
   Abstract »    Full Text »    PDF »
Distinct Effects of Hedgehog Signaling on Neuronal Fate Specification and Cell Cycle Progression in the Embryonic Mouse Retina.
K. Sakagami, L. Gan, and X.-J. Yang (2009)
J. Neurosci. 29, 6932-6944
   Abstract »    Full Text »    PDF »
Defining retinal progenitor cell competence in Xenopus laevis by clonal analysis.
L. L. Wong and D. H. Rapaport (2009)
Development 136, 1707-1715
   Abstract »    Full Text »    PDF »
Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.
S. Kawauchi, J. Kim, R. Santos, H.-H. Wu, A. D. Lander, and A. L. Calof (2009)
Development 136, 1453-1464
   Abstract »    Full Text »    PDF »
Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity.
D. S. Wall, A. J. Mears, B. McNeill, C. Mazerolle, S. Thurig, Y. Wang, R. Kageyama, and V. A. Wallace (2009)
J. Cell Biol. 184, 101-112
   Abstract »    Full Text »    PDF »
Rewiring the retinal ganglion cell gene regulatory network: Neurod1 promotes retinal ganglion cell fate in the absence of Math5.
C.-A. Mao, S. W. Wang, P. Pan, and W. H. Klein (2008)
Development 135, 3379-3388
   Abstract »    Full Text »    PDF »
Gene-regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.
X. Mu, X. Fu, P. D. Beremand, T. L. Thomas, and W. H. Klein (2008)
PNAS 105, 6942-6947
   Abstract »    Full Text »    PDF »
A Comprehensive Negative Regulatory Program Controlled by Brn3b to Ensure Ganglion Cell Specification from Multipotential Retinal Precursors.
F. Qiu, H. Jiang, and M. Xiang (2008)
J. Neurosci. 28, 3392-3403
   Abstract »    Full Text »    PDF »
Molecular regulation of visual system development: more than meets the eye.
T. Harada, C. Harada, and L. F. Parada (2007)
Genes & Dev. 21, 367-378
   Abstract »    Full Text »    PDF »
The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord.
J.-P. Liu (2006)
Development 133, 2865-2874
   Abstract »    Full Text »    PDF »
Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
O. Yaron, C. Farhy, T. Marquardt, M. Applebury, and R. Ashery-Padan (2006)
Development 133, 1367-1378
   Abstract »    Full Text »    PDF »
Influences on neural lineage and mode of division in the zebrafish retina in vivo.
L. Poggi, M. Vitorino, I. Masai, and W. A. Harris (2005)
J. Cell Biol. 171, 991-999
   Abstract »    Full Text »    PDF »
Regulation of muscle growth by multiple ligands signaling through activin type II receptors.
S.-J. Lee, L. A. Reed, M. V. Davies, S. Girgenrath, M. E. P. Goad, K. N. Tomkinson, J. F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, et al. (2005)
PNAS 102, 18117-18122
   Abstract »    Full Text »    PDF »
Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina.
Y. Wang, G. D. Dakubo, S. Thurig, C. J. Mazerolle, and V. A. Wallace (2005)
Development 132, 5103-5113
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882