Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 308 (5730): 1931-1934

Copyright © 2005 by the American Association for the Advancement of Science

Elementary Response of Olfactory Receptor Neurons to Odorants

Vikas Bhandawat,* Johannes Reisert, King-Wai Yau*

Abstract: Signaling by heterotrimeric GTP-binding proteins (G proteins) drives numerous cellular processes. The number of G protein molecules activated by a single membrane receptor is a determinant of signal amplification, although in most cases this parameter remains unknown. In retinal rod photoreceptors, a long-lived photoisomerized rhodopsin molecule activates many G protein molecules (transducins), yielding substantial amplification and a large elementary (single-photon) response, before rhodopsin activity is terminated. Here we report that the elementary response in olfactory transduction is extremely small. A ligand-bound odorant receptor has a low probability of activating even one G protein molecule because the odorant dwell-time is very brief. Thus, signal amplification in olfactory transduction appears fundamentally different from that of phototransduction.

Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

* To whom correspondence should be addressed. Room 907 Preclinical Teaching Building, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA. E-mail: vbhanda{at}mail.jhmi.edu (V.B.); kwyau{at}mail.jhmi.edu (K.-W.Y.)

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
2,4,6-Trichloroanisole is a potent suppressor of olfactory signal transduction.
H. Takeuchi, H. Kato, and T. Kurahashi (2013)
PNAS 110, 16235-16240
   Abstract »    Full Text »    PDF »
Hyperpolarisation-activated cyclic nucleotide-gated channels regulate the spontaneous firing rate of olfactory receptor neurons and affect glomerular formation in mice.
N. Nakashima, T. M. Ishii, Y. Bessho, R. Kageyama, and H. Ohmori (2013)
J. Physiol. 591, 1749-1769
   Abstract »    Full Text »    PDF »
A Computational Study of Odorant Transport and Deposition in the Canine Nasal Cavity: Implications for Olfaction.
M. J. Lawson, B. A. Craven, E. G. Paterson, and G. S. Settles (2012)
Chem Senses 37, 553-566
   Abstract »    Full Text »    PDF »
The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery.
J. A. Salon, D. T. Lodowski, and K. Palczewski (2011)
Pharmacol. Rev. 63, 901-937
   Abstract »    Full Text »    PDF »
Perspectives on: Information and coding in mammalian sensory physiology: Response kinetics of olfactory receptor neurons and the implications in olfactory coding.
J. Reisert and H. Zhao (2011)
J. Gen. Physiol. 138, 303-310
   Full Text »    PDF »
Interplay among cGMP, cAMP, and Ca2+ in Living Olfactory Sensory Neurons In Vitro and In Vivo.
M. Pietrobon, I. Zamparo, M. Maritan, S. A. Franchi, T. Pozzan, and C. Lodovichi (2011)
J. Neurosci. 31, 8395-8405
   Abstract »    Full Text »    PDF »
Olfactory receptor neuron responses coding for rapid odour sampling.
A. S. Ghatpande and J. Reisert (2011)
J. Physiol. 589, 2261-2273
   Abstract »    Full Text »    PDF »
Unitary response of mouse olfactory receptor neurons.
Y. Ben-Chaim, M. M. Cheng, and K.-W. Yau (2011)
PNAS 108, 822-827
   Abstract »    Full Text »    PDF »
A proton current drives action potentials in genetically identified sour taste cells.
R. B. Chang, H. Waters, and E. R. Liman (2010)
PNAS 107, 22320-22325
   Abstract »    Full Text »    PDF »
Signaling by olfactory receptor neurons near threshold.
V. Bhandawat, J. Reisert, and K.-W. Yau (2010)
PNAS 107, 18682-18687
   Abstract »    Full Text »    PDF »
Origin of basal activity in mammalian olfactory receptor neurons.
J. Reisert (2010)
J. Gen. Physiol. 136, 529-540
   Abstract »    Full Text »    PDF »
Optimal processing of photoreceptor signals is required to maximize behavioural sensitivity.
H. Okawa, K. J. Miyagishima, A. C. Arman, J. B. Hurley, G. D. Field, and A. P. Sampath (2010)
J. Physiol. 588, 1947-1960
   Abstract »    Full Text »    PDF »
Molecular components of signal amplification in olfactory sensory cilia.
T. Hengl, H. Kaneko, K. Dauner, K. Vocke, S. Frings, and F. Mohrlen (2010)
PNAS 107, 6052-6057
   Abstract »    Full Text »    PDF »
Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design'?.
A. F. Silbering and R. Benton (2010)
EMBO Rep. 11, 173-179
   Abstract »    Full Text »    PDF »
Activation and desensitization of the olfactory cAMP-gated transduction channel: identification of functional modules.
C. Waldeck, K. Vocke, N. Ungerer, S. Frings, and F. Mohrlen (2009)
J. Gen. Physiol. 134, 397-408
   Abstract »    Full Text »    PDF »
Arrestin Competition Influences the Kinetics and Variability of the Single-Photon Responses of Mammalian Rod Photoreceptors.
T. Doan, A. W. Azevedo, J. B. Hurley, and F. Rieke (2009)
J. Neurosci. 29, 11867-11879
   Abstract »    Full Text »    PDF »
Enhancement of Odorant-Induced Responses in Olfactory Receptor Neurons by Zinc Nanoparticles.
N. Viswaprakash, J. C. Dennis, L. Globa, O. Pustovyy, E. M. Josephson, P. Kanju, E. E. Morrison, and V. J. Vodyanoy (2009)
Chem Senses 34, 547-557
   Abstract »    Full Text »    PDF »
Myr-Ric-8A Enhances G{alpha}15-Mediated Ca2+ Response of Vertebrate Olfactory Receptors.
K. Yoshikawa and K. Touhara (2009)
Chem Senses 34, 15-23
   Abstract »    Full Text »    PDF »
The Electrochemical Basis of Odor Transduction in Vertebrate Olfactory Cilia.
S. J. Kleene (2008)
Chem Senses 33, 839-859
   Abstract »    Full Text »    PDF »
How vision begins: An odyssey.
D.-G. Luo, T. Xue, and K.-W. Yau (2008)
PNAS 105, 9855-9862
   Abstract »    Full Text »    PDF »
Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches.
D. J. Muller, N. Wu, and K. Palczewski (2008)
Pharmacol. Rev. 60, 43-78
   Abstract »    Full Text »    PDF »
Distribution, Amplification, and Summation of Cyclic Nucleotide Sensitivities within Single Olfactory Sensory Cilia.
H. Takeuchi and T. Kurahashi (2008)
J. Neurosci. 28, 766-775
   Abstract »    Full Text »    PDF »
Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons.
J. Reisert, K.-W. Yau, and F. L. Margolis (2007)
J. Physiol. 585, 731-740
   Abstract »    Full Text »    PDF »
Disynaptic Amplification of Metabotropic Glutamate Receptor 1 Responses in the Olfactory Bulb.
D. De Saint Jan and G. L. Westbrook (2007)
J. Neurosci. 27, 132-140
   Abstract »    Full Text »    PDF »
beta-Arrestin2-Mediated Internalization of Mammalian Odorant Receptors.
A. Mashukova, M. Spehr, H. Hatt, and E. M. Neuhaus (2006)
J. Neurosci. 26, 9902-9912
   Abstract »    Full Text »    PDF »
Visualizing odorant receptor trafficking in living cells down to the single-molecule level.
V. Jacquier, M. Prummer, J.-M. Segura, H. Pick, and H. Vogel (2006)
PNAS 103, 14325-14330
   Abstract »    Full Text »    PDF »
Ric-8B promotes functional expression of odorant receptors.
L. E. C. Von Dannecker, A. F. Mercadante, and B. Malnic (2006)
PNAS 103, 9310-9314
   Abstract »    Full Text »    PDF »
Calmodulin Contributes to Gating Control in Olfactory Calcium-activated Chloride Channels.
H. Kaneko, F. Mohrlen, and S. Frings (2006)
J. Gen. Physiol. 127, 737-748
   Abstract »    Full Text »    PDF »
Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina.
F. A. Dunn, T. Doan, A. P. Sampath, and F. Rieke (2006)
J. Neurosci. 26, 3959-3970
   Abstract »    Full Text »    PDF »
How Sensitive Is a Nose?.
R. G. Vogt (2006)
Sci. STKE 2006, pe8
   Abstract »    Full Text »    PDF »
Highlights from the Literature.
(2005)
Physiology 20, 287-291
   Full Text »    PDF »
Smell's different.
K. A. Nyberg (2005)
J. Cell Biol. 170, 165
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882