Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5731): 140-142

Copyright © 2005 by the American Association for the Advancement of Science

tRNA Actively Shuttles Between the Nucleus and Cytosol in Yeast

Akira Takano,1 Toshiya Endo,1,3,4 Tohru Yoshihisa1,2*

Abstract: Previous evidence suggested that transfer RNAs (tRNAs) cross the nuclear envelope to the cytosol only once after maturing in the nucleus. We now present evidence for nuclear import of tRNAs in yeast. Several export mutants accumulate mature tRNAs in the nucleus even in the absence of transcription. Import requires energy but not the Ran cycle. These results indicate that tRNAs shuttle between the nucleus and cytosol.

1 Department of Chemistry, Graduate School of Science, Japan Science and Technology Corporation, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
2 Research Center for Materials Science, Japan Science and Technology Corporation, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
3 Institute for Advanced Research, Japan Science and Technology Corporation, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
4 Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.

* To whom all correspondence should be addressed. E-mail: tyoshihi{at}biochem.chem.nagoya-u.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Protein Kinase A Is Part of a Mechanism That Regulates Nuclear Reimport of the Nuclear tRNA Export Receptors Los1p and Msn5p.
J. B. Pierce, G. van der Merwe, and D. Mangroo (2014)
Eukaryot. Cell 13, 209-230
   Abstract »    Full Text »    PDF »
tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6.
E. Skowronek, P. Grzechnik, B. Spath, A. Marchfelder, and J. Kufel (2014)
RNA 20, 115-130
   Abstract »    Full Text »    PDF »
Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae.
E. B. Kramer and A. K. Hopper (2013)
PNAS 110, 21042-21047
   Abstract »    Full Text »    PDF »
Genome-Wide Investigation of the Role of the tRNA Nuclear-Cytoplasmic Trafficking Pathway in Regulation of the Yeast Saccharomyces cerevisiae Transcriptome and Proteome.
H.-Y. Chu and A. K. Hopper (2013)
Mol. Cell. Biol. 33, 4241-4254
   Abstract »    Full Text »    PDF »
Transfer RNA Post-Transcriptional Processing, Turnover, and Subcellular Dynamics in the Yeast Saccharomyces cerevisiae.
A. K. Hopper (2013)
Genetics 194, 43-67
   Abstract »    Full Text »    PDF »
Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm.
K. Nozawa, R. Ishitani, T. Yoshihisa, M. Sato, F. Arisaka, S. Kanamaru, N. Dohmae, D. Mangroo, B. Senger, H. D. Becker, et al. (2013)
Nucleic Acids Res. 41, 3901-3914
   Abstract »    Full Text »    PDF »
tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae.
M. A. Preston, S. D'Silva, Y. Kon, and E. M. Phizicky (2013)
RNA 19, 243-256
   Abstract »    Full Text »    PDF »
Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast.
T. Ohira and T. Suzuki (2011)
PNAS 108, 10502-10507
   Abstract »    Full Text »    PDF »
P-body components, Dhh1 and Pat1, are involved in tRNA nuclear-cytoplasmic dynamics.
R. L. Hurto and A. K. Hopper (2011)
RNA 17, 912-924
   Abstract »    Full Text »    PDF »
Nutrient stress does not cause retrograde transport of cytoplasmic tRNA to the nucleus in evolutionarily diverse organisms.
S. C. Chafe, J. B. Pierce, M. B. K. Eswara, A. T. McGuire, and D. Mangroo (2011)
Mol. Biol. Cell 22, 1091-1103
   Abstract »    Full Text »    PDF »
tRNA biology charges to the front.
E. M. Phizicky and A. K. Hopper (2010)
Genes & Dev. 24, 1832-1860
   Abstract »    Full Text »    PDF »
Scyl1 Facilitates Nuclear tRNA Export in Mammalian Cells by Acting at the Nuclear Pore Complex.
S. C. Chafe and D. Mangroo (2010)
Mol. Biol. Cell 21, 2483-2499
   Abstract »    Full Text »    PDF »
Regulation of tRNA Bidirectional Nuclear-Cytoplasmic Trafficking in Saccharomyces cerevisiae.
A. Murthi, H. H. Shaheen, H.-Y. Huang, M. A. Preston, T.-P. Lai, E. M. Phizicky, and A. K. Hopper (2010)
Mol. Biol. Cell 21, 639-649
   Abstract »    Full Text »    PDF »
Utp9p Facilitates Msn5p-mediated Nuclear Reexport of Retrograded tRNAs in Saccharomyces cerevisiae.
M. B.K. Eswara, A. T. McGuire, J. B. Pierce, and D. Mangroo (2009)
Mol. Biol. Cell 20, 5007-5025
   Abstract »    Full Text »    PDF »
MicroRNAs with a nucleolar location.
J. C. Ritland Politz, E. M. Hogan, and T. Pederson (2009)
RNA 15, 1705-1715
   Abstract »    Full Text »    PDF »
A Targeted Bypass Screen Identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for Stable U1 snRNP/Pre-mRNA Interaction.
R. Hage, L. Tung, H. Du, L. Stands, M. Rosbash, and T.-H. Chang (2009)
Mol. Cell. Biol. 29, 3941-3952
   Abstract »    Full Text »    PDF »
Colicin E5 Ribonuclease Domain Cleaves Saccharomyces cerevisiae tRNAs Leading to Impairment of the Cell Growth.
T. Ogawa, M. Hidaka, K. Kohno, and H. Masaki (2009)
J. Biochem. 145, 461-466
   Abstract »    Full Text »    PDF »
Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia.
Y. Li, J. Luo, H. Zhou, J.-Y. Liao, L.-M. Ma, Y.-Q. Chen, and L.-H. Qu (2008)
Nucleic Acids Res. 36, 6048-6055
   Abstract »    Full Text »    PDF »
Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1.
I. Chernyakov, J. M. Whipple, L. Kotelawala, E. J. Grayhack, and E. M. Phizicky (2008)
Genes & Dev. 22, 1369-1380
   Abstract »    Full Text »    PDF »
Utp8p Is a Nucleolar tRNA-binding Protein That Forms a Complex with Components of the Nuclear tRNA Export Machinery in Saccharomyces cerevisiae.
B. R. Strub, M. B.K. Eswara, J. B. Pierce, and D. Mangroo (2007)
Mol. Biol. Cell 18, 3845-3859
   Abstract »    Full Text »    PDF »
Reversibility in nucleocytoplasmic transport.
R. B. Kopito and M. Elbaum (2007)
PNAS 104, 12743-12748
   Abstract »    Full Text »    PDF »
Rapid and Reversible Nuclear Accumulation of Cytoplasmic tRNA in Response to Nutrient Availability.
M. L. Whitney, R. L. Hurto, H. H. Shaheen, and A. K. Hopper (2007)
Mol. Biol. Cell 18, 2678-2686
   Abstract »    Full Text »    PDF »
The ins and outs of tRNA transport.
M. Mirande (2007)
EMBO Rep. 8, 547-549
   Full Text »    PDF »
Inorganic Phosphate Deprivation Causes tRNA Nuclear Accumulation via Retrograde Transport in Saccharomyces cerevisiae.
R. L. Hurto, A. H. Y. Tong, C. Boone, and A. K. Hopper (2007)
Genetics 176, 841-852
   Abstract »    Full Text »    PDF »
Retrograde nuclear accumulation of cytoplasmic tRNA in rat hepatoma cells in response to amino acid deprivation.
H. H. Shaheen, R. L. Horetsky, S. R. Kimball, A. Murthi, L. S. Jefferson, and A. K. Hopper (2007)
PNAS 104, 8845-8850
   Abstract »    Full Text »    PDF »
Conservation of a Masked Nuclear Export Activity of La Proteins and Its Effects on tRNA Maturation.
M. A. Bayfield, T. E. Kaiser, R. V. Intine, and R. J. Maraia (2007)
Mol. Cell. Biol. 27, 3303-3312
   Abstract »    Full Text »    PDF »
Thio Modification of Yeast Cytosolic tRNA Is an Iron-Sulfur Protein-Dependent Pathway.
Y. Nakai, M. Nakai, R. Lill, T. Suzuki, and H. Hayashi (2007)
Mol. Cell. Biol. 27, 2841-2847
   Abstract »    Full Text »    PDF »
The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA.
M. P. Spiller, K.-L. Boon, M. A. M. Reijns, and J. D. Beggs (2007)
Nucleic Acids Res. 35, 923-929
   Abstract »    Full Text »    PDF »
Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery.
A. T. McGuire and D. Mangroo (2007)
EMBO J. 26, 288-300
   Abstract »    Full Text »    PDF »
Exportin-5 orthologues are functionally divergent among species.
S. Shibata, M. Sasaki, T. Miki, A. Shimamoto, Y. Furuichi, J. Katahira, and Y. Yoneda (2006)
Nucleic Acids Res. 34, 4711-4721
   Abstract »    Full Text »    PDF »
Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA.
A. Noma, Y. Kirino, Y. Ikeuchi, and T. Suzuki (2006)
EMBO J. 25, 2142-2154
   Abstract »    Full Text »    PDF »
The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability..
L. A. COPELA, G. CHAKSHUSMATHI, R. L. SHERRER, and S. L. WOLIN (2006)
RNA 12, 644-654
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Yeast Mitochondrial Outer Membrane Reveals Accumulation of a Subclass of Preproteins.
R. P. Zahedi, A. Sickmann, A. M. Boehm, C. Winkler, N. Zufall, B. Schonfisch, B. Guiard, N. Pfanner, and C. Meisinger (2006)
Mol. Biol. Cell 17, 1436-1450
   Abstract »    Full Text »    PDF »
Rsp5 ubiquitin ligase modulates translation accuracy in yeast Saccharomyces cerevisiae.
M. KWAPISZ, P. CHOLBINSKI, A. K. HOPPER, J.-P. ROUSSET, and T. ZOLADEK (2005)
RNA 11, 1710-1718
   Abstract »    Full Text »    PDF »
Depletion of Saccharomyces cerevisiae tRNAHis Guanylyltransferase Thg1p Leads to Uncharged tRNAHis with Additional m5C.
W. Gu, R. L. Hurto, A. K. Hopper, E. J. Grayhack, and E. M. Phizicky (2005)
Mol. Cell. Biol. 25, 8191-8201
   Abstract »    Full Text »    PDF »
Retrograde tRNAs.
R. S. Tuma (2005)
J. Cell Biol. 170, 512
   Full Text »    PDF »
Have tRNA, will travel.
E. M. Phizicky (2005)
PNAS 102, 11127-11128
   Full Text »    PDF »
Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae.
H. H. Shaheen and A. K. Hopper (2005)
PNAS 102, 11290-11295
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882