Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5732): 293-297

Copyright © 2005 by the American Association for the Advancement of Science

FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis

Takato Imaizumi, Thomas F. Schultz, Frank G. Harmon, Lindsey A. Ho, Steve A. Kay*

Abstract: The temporal control of CONSTANS (CO) expression and activity is a key mechanism in photoperiodic flowering in Arabidopsis. FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) protein regulates CO transcription, although the molecular mechanism is unknown. We demonstrate here that FKF1 controls the stability of a Dof transcription factor, CYCLING DOF FACTOR 1 (CDF1). FKF1 physically interacts with CDF1, and CDF1 protein is more stable in fkf1 mutants. Plants with elevated levels of CDF1 flower late and have reduced expression of CO. CDF1 and CO are expressed in the same tissues, and CDF1 binds to the CO promoter. Thus, FKF1 controls daily CO expression in part by degrading CDF1, a repressor of CO transcription.

Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

* To whom correspondence should be addressed. E-mail: stevek{at}scripps.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses.
A.-R. Corrales, S. G. Nebauer, L. Carrillo, P. Fernandez-Nohales, J. Marques, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa, R.-V. Molina, et al. (2014)
J. Exp. Bot. 65, 995-1012
   Abstract »    Full Text »    PDF »
Mathematical Models Light Up Plant Signaling.
Y. H. Chew, R. W. Smith, H. J. Jones, D. D. Seaton, R. Grima, and K. J. Halliday (2014)
PLANT CELL 26, 5-20
   Abstract »    Full Text »    PDF »
Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions.
N. Elrouby, M. V. Bonequi, A. Porri, and G. Coupland (2013)
PNAS 110, 19956-19961
   Abstract »    Full Text »    PDF »
Arabidopsis Kelch Repeat F-Box Proteins Regulate Phenylpropanoid Biosynthesis via Controlling the Turnover of Phenylalanine Ammonia-Lyase.
X. Zhang, M. Gou, and C.-J. Liu (2013)
PLANT CELL 25, 4994-5010
   Abstract »    Full Text »    PDF »
The F-Box Protein OsFBK12 Targets OsSAMS1 for Degradation and Affects Pleiotropic Phenotypes, Including Leaf Senescence, in Rice.
Y. Chen, Y. Xu, W. Luo, W. Li, N. Chen, D. Zhang, and K. Chong (2013)
Plant Physiology 163, 1673-1685
   Abstract »    Full Text »    PDF »
PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS.
M. Endo, Y. Tanigawa, T. Murakami, T. Araki, and A. Nagatani (2013)
PNAS 110, 18017-18022
   Abstract »    Full Text »    PDF »
The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA.
J. Kim, R. Geng, R. A. Gallenstein, and D. E. Somers (2013)
Development 140, 4060-4069
   Abstract »    Full Text »    PDF »
Plant E3 Ligases: Flexible Enzymes in a Sessile World.
L. Chen and H. Hellmann (2013)
Mol Plant 6, 1388-1404
   Abstract »    Full Text »    PDF »
Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
H.-Y. Yeang (2013)
J. Exp. Bot. 64, 2643-2652
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Ubiquitin-Specific Proteases UBP12 and UBP13 Act in Circadian Clock and Photoperiodic Flowering Regulation in Arabidopsis.
X. Cui, F. Lu, Y. Li, Y. Xue, Y. Kang, S. Zhang, Q. Qiu, X. Cui, S. Zheng, B. Liu, et al. (2013)
Plant Physiology 162, 897-906
   Abstract »    Full Text »    PDF »
The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice.
H. Itoh and T. Izawa (2013)
Mol Plant 6, 635-649
   Abstract »    Full Text »    PDF »
TOO MUCH LOVE, a Novel Kelch Repeat-Containing F-box Protein, Functions in the Long-Distance Regulation of the Legume-Rhizobium Symbiosis.
M. Takahara, S. Magori, T. Soyano, S. Okamoto, C. Yoshida, K. Yano, S. Sato, S. Tabata, K. Yamaguchi, S. Shigenobu, et al. (2013)
Plant Cell Physiol. 54, 433-447
   Abstract »    Full Text »    PDF »
Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana.
V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R. Feil, J. E. Lunn, M. Stitt, and M. Schmid (2013)
Science 339, 704-707
   Abstract »    Full Text »    PDF »
The Arabidopsis F-Box Protein CORONATINE INSENSITIVE1 Is Stabilized by SCFCOI1 and Degraded via the 26S Proteasome Pathway.
J. Yan, H. Li, S. Li, R. Yao, H. Deng, Q. Xie, and D. Xie (2013)
PLANT CELL 25, 486-498
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome.
N. Suetsugu and M. Wada (2013)
Plant Cell Physiol. 54, 8-23
   Abstract »    Full Text »    PDF »
The {gamma}-Carbonic Anhydrase Subcomplex of Mitochondrial Complex I Is Essential for Development and Important for Photomorphogenesis of Arabidopsis.
Q. Wang, R. Fristedt, X. Yu, Z. Chen, H. Liu, Y. Lee, H. Guo, S. S. Merchant, and C. Lin (2012)
Plant Physiology 160, 1373-1383
   Abstract »    Full Text »    PDF »
Transcriptional repressor PRR5 directly regulates clock-output pathways.
N. Nakamichi, T. Kiba, M. Kamioka, T. Suzuki, T. Yamashino, T. Higashiyama, H. Sakakibara, and T. Mizuno (2012)
PNAS 109, 17123-17128
   Abstract »    Full Text »    PDF »
FKF1 Conveys Timing Information for CONSTANS Stabilization in Photoperiodic Flowering.
Y. H. Song, R. W. Smith, B. J. To, A. J. Millar, and T. Imaizumi (2012)
Science 336, 1045-1049
   Abstract »    Full Text »    PDF »
LOV Domain-Containing F-Box Proteins: Light-Dependent Protein Degradation Modules in Arabidopsis.
S. Ito, Y. H. Song, and T. Imaizumi (2012)
Mol Plant 5, 573-582
   Abstract »    Full Text »    PDF »
Involvement of PpDof1 transcriptional repressor in the nutrient condition-dependent growth control of protonemal filaments in Physcomitrella patens.
T. Sugiyama, T. Ishida, N. Tabei, M. Shigyo, M. Konishi, T. Yoneyama, and S. Yanagisawa (2012)
J. Exp. Bot. 63, 3185-3197
   Abstract »    Full Text »    PDF »
Plastids Are Major Regulators of Light Signaling in Arabidopsis.
M. E. Ruckle, L. D. Burgoon, L. A. Lawrence, C. A. Sinkler, and R. M. Larkin (2012)
Plant Physiology 159, 366-390
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering.
A. Lazaro, F. Valverde, M. Pineiro, and J. A. Jarillo (2012)
PLANT CELL 24, 982-999
   Abstract »    Full Text »    PDF »
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis.
S. Ito, Y. H. Song, A. R. Josephson-Day, R. J. Miller, G. Breton, R. G. Olmstead, and T. Imaizumi (2012)
PNAS 109, 3582-3587
   Abstract »    Full Text »    PDF »
CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis.
S. X. Lu, C. J. Webb, S. M. Knowles, S. H. J. Kim, Z. Wang, and E. M. Tobin (2012)
Plant Physiology 158, 1079-1088
   Abstract »    Full Text »    PDF »
EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana.
P. Koops, S. Pelser, M. Ignatz, C. Klose, K. Marrocco-Selden, and T. Kretsch (2011)
J. Exp. Bot. 62, 5547-5560
   Abstract »    Full Text »    PDF »
A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering.
S. Watanabe, Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, R. Takahashi, T. Anai, S. Tabata, K. Kitamura, et al. (2011)
Genetics 188, 395-407
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
Conservation of Arabidopsis thaliana Photoperiodic Flowering Time Genes in Onion (Allium cepa L.).
A. Taylor, A. J. Massiah, and B. Thomas (2010)
Plant Cell Physiol. 51, 1638-1647
   Abstract »    Full Text »    PDF »
Genomewide Characterization of the Light-Responsive and Clock-Controlled Output Pathways in Lotus japonicus with Special Emphasis of its Uniqueness.
N. Ono, K. Ishida, T. Yamashino, H. Nakanishi, S. Sato, S. Tabata, and T. Mizuno (2010)
Plant Cell Physiol. 51, 1800-1814
   Abstract »    Full Text »    PDF »
Overexpression of AtDOF4.7, an Arabidopsis DOF Family Transcription Factor, Induces Floral Organ Abscission Deficiency in Arabidopsis.
P.-C. Wei, F. Tan, X.-Q. Gao, X.-Q. Zhang, G.-Q. Wang, H. Xu, L.-J. Li, J. Chen, and X.-C. Wang (2010)
Plant Physiology 153, 1031-1045
   Abstract »    Full Text »    PDF »
DAY NEUTRAL FLOWERING Represses CONSTANS to Prevent Arabidopsis Flowering Early in Short Days.
K. Morris, S. Thornber, L. Codrai, C. Richardson, A. Craig, A. Sadanandom, B. Thomas, and S. Jackson (2010)
PLANT CELL 22, 1118-1128
   Abstract »    Full Text »    PDF »
F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression.
A. Baudry, S. Ito, Y. H. Song, A. A. Strait, T. Kiba, S. Lu, R. Henriques, J. L. Pruneda-Paz, N. H. Chua, E. M. Tobin, et al. (2010)
PLANT CELL 22, 606-622
   Abstract »    Full Text »    PDF »
Epigenetic Regulation of Gene Programs by EMF1 and EMF2 in Arabidopsis.
S. Y. Kim, T. Zhu, and Z. R. Sung (2010)
Plant Physiology 152, 516-528
   Abstract »    Full Text »    PDF »
Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths.
A. Giakountis, F. Cremer, S. Sim, M. Reymond, J. Schmitt, and G. Coupland (2010)
Plant Physiology 152, 177-191
   Abstract »    Full Text »    PDF »
A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds.
E. F. Walton, R.-M. Wu, A. C. Richardson, M. Davy, R. P. Hellens, K. Thodey, B. J. Janssen, A. P. Gleave, G. M. Rae, M. Wood, et al. (2009)
J. Exp. Bot. 60, 3835-3848
   Abstract »    Full Text »    PDF »
At the end of the day: a common molecular mechanism for photoperiod responses in plants?.
U. Lagercrantz (2009)
J. Exp. Bot. 60, 2501-2515
   Abstract »    Full Text »    PDF »
Plant research accelerates along the (bio)informatics superhighway: Symposium on Plant Sensing, Response and Adaptation to the Environment.
J. M. Jimenez-Gomez and J. N. Maloof (2009)
EMBO Rep. 10, 568-572
   Full Text »    PDF »
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
A. Greenup, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2009)
Ann. Bot. 103, 1165-1172
   Abstract »    Full Text »    PDF »
The RNA Binding Protein ELF9 Directly Reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 Transcript Levels in Arabidopsis, Possibly via Nonsense-Mediated mRNA Decay.
H.-R. Song, J.-D. Song, J.-N. Cho, R. M. Amasino, B. Noh, and Y.-S. Noh (2009)
PLANT CELL 21, 1195-1211
   Abstract »    Full Text »    PDF »
Transcript Profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR Arrhythmic Triple Mutant Reveals a Role for the Circadian Clock in Cold Stress Response.
N. Nakamichi, M. Kusano, A. Fukushima, M. Kita, S. Ito, T. Yamashino, K. Saito, H. Sakakibara, and T. Mizuno (2009)
Plant Cell Physiol. 50, 447-462
   Abstract »    Full Text »    PDF »
Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis.
H. Qiao, K. N. Chang, J. Yazaki, and J. R. Ecker (2009)
Genes & Dev. 23, 512-521
   Abstract »    Full Text »    PDF »
A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene.
S. Ito, H. Kawamura, Y. Niwa, N. Nakamichi, T. Yamashino, and T. Mizuno (2009)
Plant Cell Physiol. 50, 290-303
   Abstract »    Full Text »    PDF »
The RPN5 Subunit of the 26s Proteasome Is Essential for Gametogenesis, Sporophyte Development, and Complex Assembly in Arabidopsis.
A. J. Book, J. Smalle, K.-H. Lee, P. Yang, J. M. Walker, S. Casper, J. H. Holmes, L. A. Russo, Z. W. Buzzinotti, P. D. Jenik, et al. (2009)
PLANT CELL 21, 460-478
   Abstract »    Full Text »    PDF »
Alterations in the Endogenous Ascorbic Acid Content Affect Flowering Time in Arabidopsis.
S. O. Kotchoni, K. E. Larrimore, M. Mukherjee, C. F. Kempinski, and C. Barth (2009)
Plant Physiology 149, 803-815
   Abstract »    Full Text »    PDF »
A Genomic Scan for Selection Reveals Candidates for Genes Involved in the Evolution of Cultivated Sunflower (Helianthus annuus).
M. A. Chapman, C. H. Pashley, J. Wenzler, J. Hvala, S. Tang, S. J. Knapp, and J. M. Burke (2008)
PLANT CELL 20, 2931-2945
   Abstract »    Full Text »    PDF »
Circadian Clock Proteins LHY and CCA1 Regulate SVP Protein Accumulation to Control Flowering in Arabidopsis.
S. Fujiwara, A. Oda, R. Yoshida, K. Niinuma, K. Miyata, Y. Tomozoe, T. Tajima, M. Nakagawa, K. Hayashi, G. Coupland, et al. (2008)
PLANT CELL 20, 2960-2971
   Abstract »    Full Text »    PDF »
The F-Box Gene Family Is Expanded in Herbaceous Annual Plants Relative to Woody Perennial Plants.
X. Yang, U. C. Kalluri, S. Jawdy, L. E. Gunter, T. Yin, T. J. Tschaplinski, D. J. Weston, P. Ranjan, and G. A. Tuskan (2008)
Plant Physiology 148, 1189-1200
   Abstract »    Full Text »    PDF »
Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between FLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering.
A. C. Wollenberg, B. Strasser, P. D. Cerdan, and R. M. Amasino (2008)
Plant Physiology 148, 1681-1694
   Abstract »    Full Text »    PDF »
Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering.
J.-F. Wu, Y. Wang, and S.-H. Wu (2008)
Plant Physiology 148, 948-959
   Abstract »    Full Text »    PDF »
SENSITIVE TO FREEZING6 Integrates Cellular and Environmental Inputs to the Plant Circadian Clock.
H. Knight, A. J.W. Thomson, and H. G. McWatters (2008)
Plant Physiology 148, 293-303
   Abstract »    Full Text »    PDF »
SPIN1, a K Homology Domain Protein Negatively Regulated and Ubiquitinated by the E3 Ubiquitin Ligase SPL11, Is Involved in Flowering Time Control in Rice.
M. E. Vega-Sanchez, L. Zeng, S. Chen, H. Leung, and G.-L. Wang (2008)
PLANT CELL 20, 1456-1469
   Abstract »    Full Text »    PDF »
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
S. Jang, V. Marchal, K. C. S. Panigrahi, S. Wenkel, W. Soppe, X.-W. Deng, F. Valverde, and G. Coupland (2008)
EMBO J. 27, 1277-1288
   Abstract »    Full Text »    PDF »
Identification of Dynamin as an Interactor of Rice GIGANTEA by Tandem Affinity Purification (TAP).
M. Abe, M. Fujiwara, K.-i. Kurotani, S. Yokoi, and K. Shimamoto (2008)
Plant Cell Physiol. 49, 420-432
   Abstract »    Full Text »    PDF »
COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis.
L.-J. Liu, Y.-C. Zhang, Q.-H. Li, Y. Sang, J. Mao, H.-L. Lian, L. Wang, and H.-Q. Yang (2008)
PLANT CELL 20, 292-306
   Abstract »    Full Text »    PDF »
Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana.
S. Ito, Y. Niwa, N. Nakamichi, H. Kawamura, T. Yamashino, and T. Mizuno (2008)
Plant Cell Physiol. 49, 201-213
   Abstract »    Full Text »    PDF »
PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock.
A. Para, E. M. Farre, T. Imaizumi, J. L. Pruneda-Paz, F. G. Harmon, and S. A. Kay (2007)
PLANT CELL 19, 3462-3473
   Abstract »    Full Text »    PDF »
PLANT SCIENCE: Standing on the Shoulders of GIGANTEA.
V. Rubio and X. W. Deng (2007)
Science 318, 206-207
   Abstract »    Full Text »    PDF »
FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis.
M. Sawa, D. A. Nusinow, S. A. Kay, and T. Imaizumi (2007)
Science 318, 261-265
   Abstract »    Full Text »    PDF »
Move on up, it's time for change mobile signals controlling photoperiod-dependent flowering.
Y. Kobayashi and D. Weigel (2007)
Genes & Dev. 21, 2371-2384
   Abstract »    Full Text »    PDF »
Measuring Daylength: Pharbitis Takes a Different Approach.
N. A. Eckardt (2007)
PLANT CELL 19, 2968-2969
   Full Text »    PDF »
A Circadian Rhythm Set by Dusk Determines the Expression of FT Homologs and the Short-Day Photoperiodic Flowering Response in Pharbitis.
R. Hayama, B. Agashe, E. Luley, R. King, and G. Coupland (2007)
PLANT CELL 19, 2988-3000
   Abstract »    Full Text »    PDF »
Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice.
T. Izawa (2007)
J. Exp. Bot. 58, 3091-3097
   Abstract »    Full Text »    PDF »
Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL Complex Regulates Clock Function and Photomorphogenesis in Arabidopsis thaliana.
T. Kiba, R. Henriques, H. Sakakibara, and N.-H. Chua (2007)
PLANT CELL 19, 2516-2530
   Abstract »    Full Text »    PDF »
Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana.
Y. Niwa, S. Ito, N. Nakamichi, T. Mizoguchi, K. Niinuma, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 925-937
   Abstract »    Full Text »    PDF »
Arabidopsis Clock-Associated Pseudo-Response Regulators PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway.
N. Nakamichi, M. Kita, K. Niinuma, S. Ito, T. Yamashino, T. Mizoguchi, and T. Mizuno (2007)
Plant Cell Physiol. 48, 822-832
   Abstract »    Full Text »    PDF »
Pea LATE BLOOMER1 Is a GIGANTEA Ortholog with Roles in Photoperiodic Flowering, Deetiolation, and Transcriptional Regulation of Circadian Clock Gene Homologs.
V. Hecht, C. L. Knowles, J. K. Vander Schoor, L. C. Liew, S. E. Jones, M. J.M. Lambert, and J. L. Weller (2007)
Plant Physiology 144, 648-661
   Abstract »    Full Text »    PDF »
The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period.
S. I. H. Godinho, E. S. Maywood, L. Shaw, V. Tucci, A. R. Barnard, L. Busino, M. Pagano, R. Kendall, M. M. Quwailid, M. R. Romero, et al. (2007)
Science 316, 897-900
   Abstract »    Full Text »    PDF »
Ubiquitin, Hormones and Biotic Stress in Plants.
K. Dreher and J. Callis (2007)
Ann. Bot. 99, 787-822
   Abstract »    Full Text »    PDF »
F-Box Proteins in Rice. Genome-Wide Analysis, Classification, Temporal and Spatial Gene Expression during Panicle and Seed Development, and Regulation by Light and Abiotic Stress.
M. Jain, A. Nijhawan, R. Arora, P. Agarwal, S. Ray, P. Sharma, S. Kapoor, A. K. Tyagi, and J. P. Khurana (2007)
Plant Physiology 143, 1467-1483
   Abstract »    Full Text »    PDF »
Posttranslational Photomodulation of Circadian Amplitude.
D. E. Somers, S. Fujiwara, W.-Y. Kim, and S.-S. Suh (2007)
Cold Spring Harb Symp Quant Biol 72, 193-200
   Abstract »    PDF »
Genetics and Neurobiology of Circadian Clocks in Mammals.
S. M. Siepka, S.-H. Yoo, J. Park, C. Lee, and J. S. Takahashi (2007)
Cold Spring Harb Symp Quant Biol 72, 251-259
   Abstract »    PDF »
Comparative Overviews of Clock-Associated Genes of Arabidopsis thaliana and Oryza sativa.
M. Murakami, Y. Tago, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 110-121
   Abstract »    Full Text »    PDF »
Evolutionary Processes During the Formation of the Plant-Specific Dof Transcription Factor Family.
M. Shigyo, N. Tabei, T. Yoneyama, and S. Yanagisawa (2007)
Plant Cell Physiol. 48, 179-185
   Abstract »    Full Text »    PDF »
CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis.
S. Wenkel, F. Turck, K. Singer, L. Gissot, J. Le Gourrierec, A. Samach, and G. Coupland (2006)
PLANT CELL 18, 2971-2984
   Abstract »    Full Text »    PDF »
Light signals and flowering.
B. Thomas (2006)
J. Exp. Bot. 57, 3387-3393
   Abstract »    Full Text »    PDF »
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability.
S. Laubinger, V. Marchal, J. Gentilhomme, S. Wenkel, J. Adrian, S. Jang, C. Kulajta, H. Braun, G. Coupland, and U. Hoecker (2006)
Development 133, 3213-3222
   Abstract »    Full Text »    PDF »
Plant Circadian Rhythms.
C. R. McClung (2006)
PLANT CELL 18, 792-803
   Full Text »    PDF »
Suppression of the Floral Activator Hd3a Is the Principal Cause of the Night Break Effect in Rice.
R. Ishikawa, S. Tamaki, S. Yokoi, N. Inagaki, T. Shinomura, M. Takano, and K. Shimamoto (2005)
PLANT CELL 17, 3326-3336
   Abstract »    Full Text »    PDF »
Independent Roles for EARLY FLOWERING 3 and ZEITLUPE in the Control of Circadian Timing, Hypocotyl Length, and Flowering Time.
W.-Y. Kim, K. A. Hicks, and D. E. Somers (2005)
Plant Physiology 139, 1557-1569
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882