Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5732): 310-311

Copyright © 2005 by the American Association for the Advancement of Science

MicroRNA Expression in Zebrafish Embryonic Development

Erno Wienholds,1 Wigard P. Kloosterman,1 Eric Miska,2,3 Ezequiel Alvarez-Saavedra,2 Eugene Berezikov,1 Ewart de Bruijn,1 H. Robert Horvitz,2 Sakari Kauppinen,4 Ronald H. A. Plasterk1*

Abstract: MicroRNAs (miRNAs) are small noncoding RNAs, about 21 nucleotides in length, that can regulate gene expression by base-pairing to partially complementary mRNAs. Regulation by miRNAs can play essential roles in embryonic development. We determined the temporal and spatial expression patterns of 115 conserved vertebrate miRNAs in zebrafish embryos by microarrays and by in situ hybridizations, using locked-nucleic acid–modified oligonucleotide probes. Most miRNAs were expressed in a highly tissue-specific manner during segmentation and later stages, but not early in development, which suggests that their role is not in tissue fate establishment but in differentiation or maintenance of tissue identity.

1 Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT Utrecht, the Netherlands.
2 Howard Hughes Medical Institute, Department of Biology and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
3 Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
4 Wilhelm Johannsen Centre for Functional Genome Research, Institute of Medical Biochemistry and Genetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark.

* To whom correspondence should be addressed. E-mail: plasterk{at}niob.knaw.nl


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cnidarian microRNAs frequently regulate targets by cleavage.
Y. Moran, D. Fredman, D. Praher, X. Z. Li, L. M. Wee, F. Rentzsch, P. D. Zamore, U. Technau, and H. Seitz (2014)
Genome Res. 24, 651-663
   Abstract »    Full Text »    PDF »
Transcriptome dynamics and diversity in the early zebrafish embryo.
H. Aanes, P. Collas, and P. Alestrom (2014)
Briefings in Functional Genomics 13, 95-105
   Abstract »    Full Text »    PDF »
A mobile insulator system to detect and disrupt cis-regulatory landscapes in vertebrates.
J. Bessa, M. Luengo, S. Rivero-Gil, A. Ariza-Cosano, A. H. F. Maia, F. J. Ruiz-Ruano, P. Caballero, S. Naranjo, J. J. Carvajal, and J. L. Gomez-Skarmeta (2014)
Genome Res. 24, 487-495
   Abstract »    Full Text »    PDF »
Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4.
L. Li, J. Tang, B. Zhang, W. Yang, M. LiuGao, R. Wang, Y. Tan, J. Fan, Y. Chang, J. Fu, et al. (2014)
Gut
   Abstract »    Full Text »
MicroRNAs in normal and psoriatic skin.
J. Xia and W. Zhang (2014)
Physiol Genomics 46, 113-122
   Abstract »    Full Text »    PDF »
Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements.
J. L. Harding, S. Horswell, C. Heliot, J. Armisen, L. B. Zimmerman, N. M. Luscombe, E. A. Miska, and C. S. Hill (2014)
Genome Res. 24, 96-106
   Abstract »    Full Text »    PDF »
Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects.
J. A. Franzosa, S. M. Bugel, T. L. Tal, J. K. La Du, S. C. Tilton, K. M. Waters, and R. L. Tanguay (2013)
FASEB J 27, 4866-4876
   Abstract »    Full Text »    PDF »
Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression.
S. Lianoglou, V. Garg, J. L. Yang, C. S. Leslie, and C. Mayr (2013)
Genes & Dev. 27, 2380-2396
   Abstract »    Full Text »    PDF »
miR-1247 Functions by Targeting Cartilage Transcription Factor SOX9.
A. Martinez-Sanchez and C. L. Murphy (2013)
J. Biol. Chem. 288, 30802-30814
   Abstract »    Full Text »    PDF »
miR-34b regulates multiciliogenesis during organ formation in zebrafish.
L. Wang, C. Fu, H. Fan, T. Du, M. Dong, Y. Chen, Y. Jin, Y. Zhou, M. Deng, A. Gu, et al. (2013)
Development 140, 2755-2764
   Abstract »    Full Text »    PDF »
Zeb1 Regulates E-cadherin and Epcam (Epithelial Cell Adhesion Molecule) Expression to Control Cell Behavior in Early Zebrafish Development.
C. Vannier, K. Mock, T. Brabletz, and W. Driever (2013)
J. Biol. Chem. 288, 18643-18659
   Abstract »    Full Text »    PDF »
MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis.
J. Rakoczy, S. L. Fernandez-Valverde, E. A. Glazov, E. N. Wainwright, T. Sato, S. Takada, A. N. Combes, D. J. Korbie, D. Miller, S. M. Grimmond, et al. (2013)
Biol Reprod 88, 143
   Abstract »    Full Text »    PDF »
miR-21 represses Pdcd4 during cardiac valvulogenesis.
H. J. Kolpa, D. S. Peal, S. N. Lynch, A. C. Giokas, S. Ghatak, S. Misra, R. A. Norris, C. A. MacRae, R. R. Markwald, P. Ellinor, et al. (2013)
Development 140, 2172-2180
   Abstract »    Full Text »    PDF »
miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio.
K. Soni, A. Choudhary, A. Patowary, A. R. Singh, S. Bhatia, S. Sivasubbu, S. Chandrasekaran, and B. Pillai (2013)
Nucleic Acids Res. 41, 4470-4480
   Abstract »    Full Text »    PDF »
Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes.
A. Jovicic, R. Roshan, N. Moisoi, S. Pradervand, R. Moser, B. Pillai, and R. Luthi-Carter (2013)
J. Neurosci. 33, 5127-5137
   Abstract »    Full Text »    PDF »
Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration.
S. Lumayag, C. E. Haldin, N. J. Corbett, K. J. Wahlin, C. Cowan, S. Turturro, P. E. Larsen, B. Kovacs, P. D. Witmer, D. Valle, et al. (2013)
PNAS 110, E507-E516
   Abstract »    Full Text »    PDF »
Therapeutic Application of MicroRNAs against Human Cancers.
J. Yang, Y. Hao, and J. J. Xi (2013)
Journal of Laboratory Automation 18, 30-33
   Abstract »    Full Text »    PDF »
miRNAs as Modulators of Angiogenesis.
S. Landskroner-Eiger, I. Moneke, and W. C. Sessa (2013)
Cold Spring Harb Perspect Med 3, a006643
   Abstract »    Full Text »    PDF »
Frontiers in Preclinical Safety Biomarkers: MicroRNAs and Messenger RNAs.
I. Mikaelian, M. Scicchitano, O. Mendes, R. A. Thomas, and B. E. LeRoy (2013)
Toxicol Pathol 41, 18-31
   Abstract »    Full Text »    PDF »
The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis.
G. Bridge, R. Monteiro, S. Henderson, V. Emuss, D. Lagos, D. Georgopoulou, R. Patient, and C. Boshoff (2012)
Blood 120, 5063-5072
   Abstract »    Full Text »    PDF »
miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish.
C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, and A. J. Giraldez (2012)
Development 139, 4356-4365
   Abstract »    Full Text »    PDF »
Developmental Epigenetics of the Murine Secondary Palate.
R. S. Seelan, P. Mukhopadhyay, M. M. Pisano, and R. M. Greene (2012)
ILAR J 53, 240-252
   Abstract »    Full Text »    PDF »
'In parallel' interconnectivity of the dorsal longitudinal anastomotic vessels requires both VEGF signaling and circulatory flow.
T. Zygmunt, S. Trzaska, L. Edelstein, J. Walls, S. Rajamani, N. Gale, L. Daroles, C. Ramirez, F. Ulrich, and J. Torres-Vazquez (2012)
J. Cell Sci. 125, 5159-5167
   Abstract »    Full Text »    PDF »
Discovering the first microRNA-targeted drug.
M. Lindow and S. Kauppinen (2012)
J. Cell Biol. 199, 407-412
   Abstract »    Full Text »    PDF »
microRNAs: the art of silencing in the ear.
A. Rudnicki and K. B. Avraham (2012)
EMBO Mol Med. 4, 849-859
   Abstract »    Full Text »    PDF »
miR-140-3p regulation of TNF-{alpha}-induced CD38 expression in human airway smooth muscle cells.
J. A. Jude, M. Dileepan, S. Subramanian, J. Solway, R. A. Panettieri Jr., T. F. Walseth, and M. S. Kannan (2012)
Am J Physiol Lung Cell Mol Physiol 303, L460-L468
   Abstract »    Full Text »    PDF »
Pancreas-enriched miRNA refines endocrine cell differentiation.
S. Kredo-Russo, A. D. Mandelbaum, A. Ness, I. Alon, K. A. Lennox, M. A. Behlke, and E. Hornstein (2012)
Development 139, 3021-3031
   Abstract »    Full Text »    PDF »
Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation.
K. Goljanek-Whysall, H. Pais, T. Rathjen, D. Sweetman, T. Dalmay, and A. Munsterberg (2012)
J. Cell Sci. 125, 3590-3600
   Abstract »    Full Text »    PDF »
MicroRNA-206 Regulates Cell Movements during Zebrafish Gastrulation by Targeting prickle1a and Regulating c-Jun N-Terminal Kinase 2 Phosphorylation.
X. Liu, G. Ning, A. Meng, and Q. Wang (2012)
Mol. Cell. Biol. 32, 2934-2942
   Abstract »    Full Text »    PDF »
Effects of {beta}4 integrin expression on microRNA patterns in breast cancer.
K. D. Gerson, V. S. R. K. Maddula, B. E. Seligmann, J. R. Shearstone, A. Khan, and A. M. Mercurio (2012)
Biology Open 1, 658-666
   Abstract »    Full Text »    PDF »
Evidence for a cytoplasmic microprocessor of pri-miRNAs.
J. S. Shapiro, R. A. Langlois, A. M. Pham, and B. R. tenOever (2012)
RNA 18, 1338-1346
   Abstract »    Full Text »    PDF »
Revealing details: whole mount microRNA in situ hybridization protocol for zebrafish embryos and adult tissues.
A. K. Lagendijk, J. D. Moulton, and J. Bakkers (2012)
Biology Open 1, 566-569
   Abstract »    Full Text »    PDF »
Transcriptome-wide analysis of small RNA expression in early zebrafish development.
C. Wei, L. Salichos, C. M. Wittgrove, A. Rokas, and J. G. Patton (2012)
RNA 18, 915-929
   Abstract »    Full Text »    PDF »
Drosophila miR-124 regulates neuroblast proliferation through its target anachronism.
R. Weng and S. M. Cohen (2012)
Development 139, 1427-1434
   Abstract »    Full Text »    PDF »
A New Level of Complexity: The Role of MicroRNAs in Cardiovascular Development.
T. Boettger and T. Braun (2012)
Circ. Res. 110, 1000-1013
   Abstract »    Full Text »    PDF »
MECHANISMS IN ENDOCRINOLOGY: Micro-RNAs: targets for enhancing osteoblast differentiation and bone formation.
H. Taipaleenmaki, L. Bjerre Hokland, L. Chen, S. Kauppinen, and M. Kassem (2012)
Eur. J. Endocrinol. 166, 359-371
   Abstract »    Full Text »    PDF »
Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2.
H. Dill, B. Linder, A. Fehr, and U. Fischer (2012)
Genes & Dev. 26, 25-30
   Abstract »    Full Text »    PDF »
Small RNA-Regulated Networks and the Evolution of Novel Structures in Plants.
Y. Plavskin and M. C. P. Timmermans (2012)
Cold Spring Harb Symp Quant Biol 77, 221-233
   Abstract »    Full Text »    PDF »
Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability.
M. H. Willemsen, A. Valles, L. A. M. H. Kirkels, M. Mastebroek, N. Olde Loohuis, A. Kos, W. M. Wissink-Lindhout, A. P. M. de Brouwer, W. M. Nillesen, R. Pfundt, et al. (2011)
J. Med. Genet. 48, 810-818
   Abstract »    Full Text »    PDF »
MicroRNAs Modulate Schwann Cell Response to Nerve Injury by Reinforcing Transcriptional Silencing of Dedifferentiation-Related Genes.
A. Viader, L.-W. Chang, T. Fahrner, R. Nagarajan, and J. Milbrandt (2011)
J. Neurosci. 31, 17358-17369
   Abstract »    Full Text »    PDF »
Evolution of MicroRNAs and the Diversification of Species.
Y.-H. E. Loh, S. V. Yi, and J. T. Streelman (2011)
Genome Biol Evol 3, 55-65
   Abstract »    Full Text »    PDF »
MicroRNA-23 Restricts Cardiac Valve Formation by Inhibiting Has2 and Extracellular Hyaluronic Acid Production.
A. K. Lagendijk, M. J. Goumans, S. B. Burkhard, and J. Bakkers (2011)
Circ. Res. 109, 649-657
   Abstract »    Full Text »    PDF »
MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2.
T. Shatseva, D. Y. Lee, Z. Deng, and B. B. Yang (2011)
J. Cell Sci. 124, 2826-2836
   Abstract »    Full Text »    PDF »
Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.
M. Kapsimali, A.-L. Kaushik, G. Gibon, L. Dirian, S. Ernest, and F. M. Rosa (2011)
Development 138, 3473-3484
   Abstract »    Full Text »    PDF »
MicroRNAs Add an Additional Layer to the Complexity of Cell Signaling.
J. I. Herschkowitz and X. Fu (2011)
Science Signaling 4, jc5
   Abstract »    Full Text »    PDF »
Chondrocyte-Specific MicroRNA-140 Regulates Endochondral Bone Development and Targets Dnpep To Modulate Bone Morphogenetic Protein Signaling.
Y. Nakamura, J. B. Inloes, T. Katagiri, and T. Kobayashi (2011)
Mol. Cell. Biol. 31, 3019-3028
   Abstract »    Full Text »    PDF »
MicroRNAs in Development and Disease.
D. Sayed and M. Abdellatif (2011)
Physiol Rev 91, 827-887
   Abstract »    Full Text »    PDF »
A Sensitive Alternative for MicroRNA In Situ Hybridizations Using Probes of 2'-O-Methyl RNA + LNA.
M. J. Soe, T. Moller, M. Dufva, and K. Holmstrom (2011)
Journal of Histochemistry & Cytochemistry 59, 661-672
   Abstract »    Full Text »    PDF »
MicroRNAs in platelet production and activation.
L. C. Edelstein and P. F. Bray (2011)
Blood 117, 5289-5296
   Abstract »    Full Text »    PDF »
Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development.
N. Li, C. Wei, A. F. Olena, and J. G. Patton (2011)
Development 138, 1817-1826
   Abstract »    Full Text »    PDF »
cis- and trans-Regulation of miR163 and Target Genes Confers Natural Variation of Secondary Metabolites in Two Arabidopsis Species and Their Allopolyploids.
D. W.-K. Ng, C. Zhang, M. Miller, G. Palmer, M. Whiteley, D. Tholl, and Z. J. Chen (2011)
PLANT CELL 23, 1729-1740
   Abstract »    Full Text »    PDF »
A Runx2/miR-3960/miR-2861 Regulatory Feedback Loop during Mouse Osteoblast Differentiation.
R. Hu, W. Liu, H. Li, L. Yang, C. Chen, Z.-Y. Xia, L.-J. Guo, H. Xie, H.-D. Zhou, X.-P. Wu, et al. (2011)
J. Biol. Chem. 286, 12328-12339
   Abstract »    Full Text »    PDF »
MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1.
K. Liu, Y. Liu, W. Mo, R. Qiu, X. Wang, J. Y. Wu, and R. He (2011)
Nucleic Acids Res. 39, 2869-2879
   Abstract »    Full Text »    PDF »
Global microRNA Analysis of the NCI-60 Cancer Cell Panel.
R. Sokilde, B. Kaczkowski, A. Podolska, S. Cirera, J. Gorodkin, S. Moller, and T. Litman (2011)
Mol. Cancer Ther. 10, 375-384
   Abstract »    Full Text »    PDF »
miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells.
S. Kuhn, S. L. Johnson, D. N. Furness, J. Chen, N. Ingham, J. M. Hilton, G. Steffes, M. A. Lewis, V. Zampini, C. M. Hackney, et al. (2011)
PNAS 108, 2355-2360
   Abstract »    Full Text »    PDF »
MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance.
G. Ye, G. Fu, S. Cui, S. Zhao, S. Bernaudo, Y. Bai, Y. Ding, Y. Zhang, B. B. Yang, and C. Peng (2011)
J. Cell Sci. 124, 359-368
   Abstract »    Full Text »    PDF »
mESAdb: microRNA Expression and Sequence Analysis Database.
K. D. Kaya, G. Karakulah, C. M. Yakicier, A. C. Acar, and O. Konu (2011)
Nucleic Acids Res. 39, D170-D180
   Abstract »    Full Text »    PDF »
microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate.
A. M. Heimberg, R. Cowper-Sal{middle dot}lari, M. Semon, P. C. J. Donoghue, and K. J. Peterson (2010)
PNAS 107, 19379-19383
   Abstract »    Full Text »    PDF »
Analysis of microRNA knockouts in mice.
C. Y. Park, Y. S. Choi, and M. T. McManus (2010)
Hum. Mol. Genet. 19, R169-R175
   Abstract »    Full Text »    PDF »
The crystal structure of an 'All Locked' nucleic acid duplex.
A. Eichert, K. Behling, C. Betzel, V. A. Erdmann, J. P. Furste, and C. Forster (2010)
Nucleic Acids Res. 38, 6729-6736
   Abstract »    Full Text »    PDF »
Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells.
P. K. Rao, E. Missiaglia, L. Shields, G. Hyde, B. Yuan, C. J. Shepherd, J. Shipley, and H. F. Lodish (2010)
FASEB J 24, 3427-3437
   Abstract »    Full Text »    PDF »
Fluorescence-Based Codetection with Protein Markers Reveals Distinct Cellular Compartments for Altered MicroRNA Expression in Solid Tumors.
L. F. Sempere, M. Preis, T. Yezefski, H. Ouyang, A. A. Suriawinata, A. Silahtaroglu, J. R. Conejo-Garcia, S. Kauppinen, W. Wells, and M. Korc (2010)
Clin. Cancer Res. 16, 4246-4255
   Abstract »    Full Text »    PDF »
MiR-322/424 and -503 Are Induced during Muscle Differentiation and Promote Cell Cycle Quiescence and Differentiation by Down-Regulation of Cdc25A.
S. Sarkar, B. K. Dey, and A. Dutta (2010)
Mol. Biol. Cell 21, 2138-2149
   Abstract »    Full Text »    PDF »
The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans.
A. M. Clark, L. D. Goldstein, M. Tevlin, S. Tavare, S. Shaham, and E. A. Miska (2010)
Nucleic Acids Res. 38, 3780-3793
   Abstract »    Full Text »    PDF »
The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis.
D. C. Deacon, K. R. Nevis, T. J. Cashman, Y. Zhou, L. Zhao, D. Washko, B. Guner-Ataman, C. G. Burns, and C. E. Burns (2010)
Development 137, 1887-1896
   Abstract »    Full Text »    PDF »
MicroRNA-140 plays dual roles in both cartilage development and homeostasis.
S. Miyaki, T. Sato, A. Inoue, S. Otsuki, Y. Ito, S. Yokoyama, Y. Kato, F. Takemoto, T. Nakasa, S. Yamashita, et al. (2010)
Genes & Dev. 24, 1173-1185
   Abstract »    Full Text »    PDF »
Mammalian microRNAs: experimental evaluation of novel and previously annotated genes.
H. R. Chiang, L. W. Schoenfeld, J. G. Ruby, V. C. Auyeung, N. Spies, D. Baek, W. K. Johnston, C. Russ, S. Luo, J. E. Babiarz, et al. (2010)
Genes & Dev. 24, 992-1009
   Abstract »    Full Text »    PDF »
MicroRNA-183 Family Members Regulate Sensorineural Fates in the Inner Ear.
H. Li, W. Kloosterman, and D. M. Fekete (2010)
J. Neurosci. 30, 3254-3263
   Abstract »    Full Text »    PDF »
Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level.
H. Pais, F. E. Nicolas, S. M. Soond, T. E. Swingler, I. M. Clark, A. Chantry, V. Moulton, and T. Dalmay (2010)
RNA 16, 489-494
   Abstract »    Full Text »    PDF »
Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes.
D. K. Darnell, S. Stanislaw, S. Kaur, and P. B. Antin (2010)
RNA 16, 632-637
   Abstract »    Full Text »    PDF »
The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1.
R. Agrawal, U. Tran, and O. Wessely (2009)
Development 136, 3927-3936
   Abstract »    Full Text »    PDF »
Lost in translation: an assessment and perspective for computational microRNA target identification.
P. Alexiou, M. Maragkakis, G. L. Papadopoulos, M. Reczko, and A. G. Hatzigeorgiou (2009)
Bioinformatics 25, 3049-3055
   Abstract »    Full Text »    PDF »
miR-145 directs intestinal maturation in zebrafish.
L. Zeng, A. D. Carter, and S. J. Childs (2009)
PNAS 106, 17793-17798
   Abstract »    Full Text »    PDF »
MicroRNA-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets.
M. T. N. Le, H. Xie, B. Zhou, P. H. Chia, P. Rizk, M. Um, G. Udolph, H. Yang, B. Lim, and H. F. Lodish (2009)
Mol. Cell. Biol. 29, 5290-5305
   Abstract »    Full Text »    PDF »
MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer.
P. Olson, J. Lu, H. Zhang, A. Shai, M. G. Chun, Y. Wang, S. K. Libutti, E. K. Nakakura, T. R. Golub, and D. Hanahan (2009)
Genes & Dev. 23, 2152-2165
   Abstract »    Full Text »    PDF »
Quantitative analysis of zeptomole microRNAs based on isothermal ramification amplification.
B. Yao, J. Li, H. Huang, C. Sun, Z. Wang, Y. Fan, Q. Chang, S. Li, and J. Xi (2009)
RNA 15, 1787-1794
   Abstract »    Full Text »    PDF »
microRNA Profiling Identifies Cancer-Specific and Prognostic Signatures in Pediatric Malignancies.
J. S. Wei, P. Johansson, Q.-R. Chen, Y. K. Song, S. Durinck, X. Wen, A. T.C. Cheuk, M. A. Smith, P. Houghton, C. Morton, et al. (2009)
Clin. Cancer Res. 15, 5560-5568
   Abstract »    Full Text »    PDF »
Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.
C. G. Crist, D. Montarras, G. Pallafacchina, D. Rocancourt, A. Cumano, S. J. Conway, and M. Buckingham (2009)
PNAS 106, 13383-13387
   Abstract »    Full Text »    PDF »
Repression of {alpha}-synuclein expression and toxicity by microRNA-7.
E. Junn, K.-W. Lee, B. S. Jeong, T. W. Chan, J.-Y. Im, and M. M. Mouradian (2009)
PNAS 106, 13052-13057
   Abstract »    Full Text »    PDF »
Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos.
S. Takada, E. Berezikov, Y. L. Choi, Y. Yamashita, and H. Mano (2009)
RNA 15, 1507-1514
   Abstract »    Full Text »    PDF »
Imaging individual microRNAs in single mammalian cells in situ.
J. Lu and A. Tsourkas (2009)
Nucleic Acids Res. 37, e100
   Abstract »    Full Text »    PDF »
Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs.
R.-J. Hsu, H.-J. Yang, and H.-J. Tsai (2009)
Nucleic Acids Res. 37, e77
   Abstract »    Full Text »    PDF »
MicroRNAs are essential for development and function of inner ear hair cells in vertebrates.
L. M. Friedman, A. A. Dror, E. Mor, T. Tenne, G. Toren, T. Satoh, D. J. Biesemeier, N. Shomron, D. M. Fekete, E. Hornstein, et al. (2009)
PNAS 106, 7915-7920
   Abstract »    Full Text »    PDF »
Evolutionary Origin and Genomic Organization of Micro-RNA Genes in Immunoglobulin Lambda Variable Region Gene Family.
S. Das (2009)
Mol. Biol. Evol. 26, 1179-1189
   Abstract »    Full Text »    PDF »
Cell-cell contact globally activates microRNA biogenesis.
H.-W. Hwang, E. A. Wentzel, and J. T. Mendell (2009)
PNAS 106, 7016-7021
   Abstract »    Full Text »    PDF »
miR-199a*, a Bone Morphogenic Protein 2-responsive MicroRNA, Regulates Chondrogenesis via Direct Targeting to Smad1.
E. A. Lin, L. Kong, X.-H. Bai, Y. Luan, and C.-j. Liu (2009)
J. Biol. Chem. 284, 11326-11335
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882