Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5732): 314-317

Copyright © 2005 by the American Association for the Advancement of Science

Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

Mari Dezawa,1* Hiroto Ishikawa,1 Yutaka Itokazu,1 Tomoyuki Yoshihara,1 Mikio Hoshino,2 Shin-ichi Takeda,3 Chizuka Ide,1 Yo-ichi Nabeshima2

Abstract: Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

1 Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Yoshidakonoecho, Sakyo-ku, Kyoto, 606-8501 Japan.
2 Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Yoshidakonoecho, Sakyo-ku, Kyoto, 606-8501 Japan.
3 Department of Molecular Therapy, National Center of Neurology and Psychiatry, Kodaira, 187-8502 Tokyo, Japan.

* To whom correspondence should be addressed. E-mail: dezawa{at}anat2.med.kyoto-u.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells.
S. Joo, H. J. Lim, J. D. Jackson, A. Atala, and J. J. Yoo (2014)
Journal of Tissue Engineering 5, 2041731414524758
   Abstract »    Full Text »    PDF »
A Novel Approach to Collecting Satellite Cells From Adult Skeletal Muscles on the Basis of Their Stress Tolerance.
T. Shigemoto, Y. Kuroda, S. Wakao, and M. Dezawa (2013)
Stem Cells Trans Med 2, 488-498
   Abstract »    Full Text »    PDF »
Satellite Cells and the Muscle Stem Cell Niche.
H. Yin, F. Price, and M. A. Rudnicki (2013)
Physiol Rev 93, 23-67
   Abstract »    Full Text »    PDF »
Adipose-Derived Stem-Cell Treatment of Skeletal Muscle Injury.
R. Pecanha, L. d. L. e. S. Bagno, M. B. Ribeiro, A. B. Robottom Ferreira, M. O. Moraes, G. Zapata-Sudo, T. H. Kasai-Brunswick, A. C. Campos-de-Carvalho, R. C. d. S. Goldenberg, and J. P. Saar Werneck-de-Castro (2012)
jbjsam 94, 609-617
   Abstract »    Full Text »    PDF »
MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM: Stem cell niche and postnatal muscle growth.
P. Bi and S. Kuang (2012)
J Anim Sci 90, 924-935
   Abstract »    Full Text »    PDF »
N-Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) Promotes Osteoblast Differentiation via the N-Formyl Peptide Receptor 1-mediated Signaling Pathway in Human Mesenchymal Stem Cells from Bone Marrow.
M. K. Shin, Y. H. Jang, H. J. Yoo, D. W. Kang, M. H. Park, M. K. Kim, J. H. Song, S. D. Kim, G. Min, H. K. You, et al. (2011)
J. Biol. Chem. 286, 17133-17143
   Abstract »    Full Text »    PDF »
Dystrophin conferral using human endothelium expressing HLA-E in the non-immunosuppressive murine model of Duchenne muscular dystrophy.
C.-H. Cui, S. Miyoshi, H. Tsuji, H. Makino, S. Kanzaki, D. Kami, M. Terai, H. Suzuki, and A. Umezawa (2011)
Hum. Mol. Genet. 20, 235-244
   Abstract »    Full Text »    PDF »
Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells.
Y. Mizuno, H. Chang, K. Umeda, A. Niwa, T. Iwasa, T. Awaya, S.-i. Fukada, H. Yamamoto, S. Yamanaka, T. Nakahata, et al. (2010)
FASEB J 24, 2245-2253
   Abstract »    Full Text »    PDF »
Unique multipotent cells in adult human mesenchymal cell populations.
Y. Kuroda, M. Kitada, S. Wakao, K. Nishikawa, Y. Tanimura, H. Makinoshima, M. Goda, H. Akashi, A. Inutsuka, A. Niwa, et al. (2010)
PNAS 107, 8639-8643
   Abstract »    Full Text »    PDF »
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow.
S. Morikawa, Y. Mabuchi, Y. Kubota, Y. Nagai, K. Niibe, E. Hiratsu, S. Suzuki, C. Miyauchi-Hara, N. Nagoshi, T. Sunabori, et al. (2009)
J. Exp. Med. 206, 2483-2496
   Abstract »    Full Text »    PDF »
The Small Molecule Phenamil Induces Osteoblast Differentiation and Mineralization.
K. W. Park, H. Waki, W.-K. Kim, B. S. J. Davies, S. G. Young, F. Parhami, and P. Tontonoz (2009)
Mol. Cell. Biol. 29, 3905-3914
   Abstract »    Full Text »    PDF »
Time-point and dosage of gene inactivation determine the tumor spectrum in conditional Ptch knockouts.
A. Zibat, A. Uhmann, F. Nitzki, M. Wijgerde, A. Frommhold, T. Heller, V. Armstrong, L. Wojnowski, L. Quintanilla-Martinez, J. Reifenberger, et al. (2009)
Carcinogenesis 30, 918-926
   Abstract »    Full Text »    PDF »
Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen.
A. Shabbir, D. Zisa, G. Suzuki, and T. Lee (2009)
Am J Physiol Heart Circ Physiol 296, H1888-H1897
   Abstract »    Full Text »    PDF »
Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells.
K. Otsu, S. Das, S. D. Houser, S. K. Quadri, S. Bhattacharya, and J. Bhattacharya (2009)
Blood 113, 4197-4205
   Abstract »    Full Text »    PDF »
Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model.
C. Kyriakou, N. Rabin, A. Pizzey, A. Nathwani, and K. Yong (2008)
Haematologica 93, 1457-1465
   Abstract »    Full Text »    PDF »
Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy.
E. Kimura, J. J. Han, S. Li, B. Fall, J. Ra, M. Haraguchi, S. J. Tapscott, and J. S. Chamberlain (2008)
Hum. Mol. Genet. 17, 2507-2517
   Abstract »    Full Text »    PDF »
cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo.
R. Siddappa, A. Martens, J. Doorn, A. Leusink, C. Olivo, R. Licht, L. van Rijn, C. Gaspar, R. Fodde, F. Janssen, et al. (2008)
PNAS 105, 7281-7286
   Abstract »    Full Text »    PDF »
Bisperoxovanadium, a phospho-tyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype.
L. Castaldi, C. Serra, F. Moretti, G. Messina, R. Paoletti, M. Sampaolesi, A. Torgovnick, M. Baiocchi, F. Padula, A. Pisaniello, et al. (2007)
FASEB J 21, 3573-3583
   Abstract »    Full Text »    PDF »
Discordant proliferation and differentiation in pituitary tumor-transforming gene-null bone marrow stem cells.
T. Rubinek, V. Chesnokova, I. Wolf, K. Wawrowsky, G. Vlotides, and S. Melmed (2007)
Am J Physiol Cell Physiol 293, C1082-C1092
   Abstract »    Full Text »    PDF »
A high-throughput siRNA library screen identifies osteogenic suppressors in human mesenchymal stem cells.
Y. Zhao and S. Ding (2007)
PNAS 104, 9673-9678
   Abstract »    Full Text »    PDF »
Tissue engineering of the synovial joint: The role of cell density.
A. Troken, N. Marion, S. Hollister, and J. Mao (2007)
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 221, 429-440
   Abstract »    PDF »
Menstrual Blood-derived Cells Confer Human Dystrophin Expression in the Murine Model of Duchenne Muscular Dystrophy via Cell Fusion and Myogenic Transdifferentiation.
C.-H. Cui, T. Uyama, K. Miyado, M. Terai, S. Kyo, T. Kiyono, and A. Umezawa (2007)
Mol. Biol. Cell 18, 1586-1594
   Abstract »    Full Text »    PDF »
Myogenic potential of adipose-tissue-derived cells.
G. Di Rocco, M. G. Iachininoto, A. Tritarelli, S. Straino, A. Zacheo, A. Germani, F. Crea, and M. C. Capogrossi (2006)
J. Cell Sci. 119, 2945-2952
   Abstract »    Full Text »    PDF »
The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander.
J. E. Anderson (2006)
J. Exp. Biol. 209, 2276-2292
   Abstract »    Full Text »    PDF »
Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion.
M. A.F.V. Goncalves, A. A.F. de Vries, M. Holkers, M. J.M. van de Watering, I. van der Velde, G. P. van Nierop, D. Valerio, and S. Knaan-Shanzer (2006)
Hum. Mol. Genet. 15, 213-221
   Abstract »    Full Text »    PDF »
Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb.
C. Napoli, S. Williams-Ignarro, F. de Nigris, G. de Rosa, L. O. Lerman, B. Farzati, A. Matarazzo, G. Sica, C. Botti, A. Fiore, et al. (2005)
PNAS 102, 17202-17206
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882