Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 309 (5734): 630-633

Copyright © 2005 by the American Association for the Advancement of Science

Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage

Antony N. Dodd,1 Neeraj Salathia,2* Anthony Hall,2{dagger} Eva Kévei,3 Réka Tóth,3 Ferenc Nagy,3 Julian M. Hibberd,1 Andrew J. Millar,2{ddagger} Alex A. R. Webb1§

Abstract: Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long– and short–circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

1 Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
2 Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
3 Plant Biology Institute, Biological Research Centre of the Hungarian Academy of Sciences, Post Office Box 521, H-6701 Szeged, Hungary.

* Present address: Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.

{dagger} Present address: School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.

{ddagger} Present address: Institute of Molecular Plant Sciences, Mayfield Road, University of Edinburgh, Edinburgh EH9 3JH, UK.

§ To whom correspondence should be addressed. E-mail: alex.webb{at}

Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control.
L. M. Muller, M. von Korff, and S. J. Davis (2014)
J. Exp. Bot. 65, 2915-2923
   Abstract »    Full Text »    PDF »
Expression of Sucrose Transporter cDNAs Specifically in Companion Cells Enhances Phloem Loading and Long-Distance Transport of Sucrose but Leads to an Inhibition of Growth and the Perception of a Phosphate Limitation.
K. Dasgupta, A. S. Khadilkar, R. Sulpice, B. Pant, W.-R. Scheible, J. Fisahn, M. Stitt, and B. G. Ayre (2014)
Plant Physiology 165, 715-731
   Abstract »    Full Text »    PDF »
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model.
A. Pokhilko, S. K. Hodge, K. Stratford, K. Knox, K. D. Edwards, A. W. Thomson, T. Mizuno, and A. J. Millar (2014)
Mol Syst Biol 6, 416
   Abstract »    Full Text »    PDF »
Quantitative analysis of regulatory flexibility under changing environmental conditions.
K. D. Edwards, O. E. Akman, K. Knox, P. J. Lumsden, A. W. Thomson, P. E. Brown, A. Pokhilko, L. Kozma-Bognar, F. Nagy, D. A. Rand, et al. (2014)
Mol Syst Biol 6, 424
   Abstract »    Full Text »    PDF »
Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-sized insects.
M. A. Giannoni-Guzman, A. Avalos, J. M. Perez, E. J. O. Loperena, M. Kayım, J. A. Medina, S. E. Massey, M. Kence, A. Kence, T. Giray, et al. (2014)
J. Exp. Biol. 217, 1307-1315
   Abstract »    Full Text »    PDF »
Isoform switching facilitates period control in the Neurospora crassa circadian clock.
O. E. Akman, J. C. W. Locke, S. Tang, I. Carre, A. J. Millar, and D. A. Rand (2014)
Mol Syst Biol 4, 164
   Abstract »    Full Text »    PDF »
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops.
A. Pokhilko, A. P. Fernandez, K. D. Edwards, M. M. Southern, K. J. Halliday, and A. J. Millar (2014)
Mol Syst Biol 8, 574
   Abstract »    Full Text »    PDF »
A Distorted Circadian Clock Causes Early Flowering and Temperature-Dependent Variation in Spike Development in the Eps-3Am Mutant of Einkorn Wheat.
P. Gawrołski, R. Ariyadasa, A. Himmelbach, N. Poursarebani, B. Kilian, N. Stein, B. Steuernagel, G. Hensel, J. Kumlehn, S. K. Sehgal, et al. (2014)
Genetics 196, 1253-1261
   Abstract »    Full Text »    PDF »
No Time for Spruce: Rapid Dampening of Circadian Rhythms in Picea abies (L. Karst).
N. Gyllenstrand, A. Karlgren, D. Clapham, K. Holm, A. Hall, P. D. Gould, T. Kallman, and U. Lagercrantz (2014)
Plant Cell Physiol. 55, 535-550
   Abstract »    Full Text »    PDF »
Correlated changes in life history traits in response to selection for faster pre-adult development in the fruit fly Drosophila melanogaster.
P. Yadav and V. K. Sharma (2014)
J. Exp. Biol. 217, 580-589
   Abstract »    Full Text »    PDF »
Regulatory principles and experimental approaches to the circadian control of starch turnover.
D. D. Seaton, O. Ebenhoh, A. J. Millar, and A. Pokhilko (2014)
J R Soc Interface 11, 20130979
   Abstract »    Full Text »    PDF »
Mathematical Models Light Up Plant Signaling.
Y. H. Chew, R. W. Smith, H. J. Jones, D. D. Seaton, R. Grima, and K. J. Halliday (2014)
PLANT CELL 26, 5-20
   Abstract »    Full Text »    PDF »
Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock.
M. U. Anwer, E. Boikoglou, E. Herrero, M. Hallstein, A. M. Davis, G. Velikkakam James, F. Nagy, and S. J. Davis (2014)
eLife Sci 3, e02206
   Abstract »    Full Text »    PDF »
Multiple Layers of Posttranslational Regulation Refine Circadian Clock Activity in Arabidopsis.
P. J. Seo and P. Mas (2014)
PLANT CELL 26, 79-87
   Abstract »    Full Text »    PDF »
Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice.
C. B. Peek, A. H. Affinati, K. M. Ramsey, H.-Y. Kuo, W. Yu, L. A. Sena, O. Ilkayeva, B. Marcheva, Y. Kobayashi, C. Omura, et al. (2013)
Science 342, 1243417
   Abstract »    Full Text »    PDF »
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis.
D. R. MacGregor, P. Gould, J. Foreman, J. Griffiths, S. Bird, R. Page, K. Stewart, G. Steel, J. Young, K. Paszkiewicz, et al. (2013)
PLANT CELL 25, 4391-4404
   Abstract »    Full Text »    PDF »
Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate.
M. C. M. Martins, M. Hejazi, J. Fettke, M. Steup, R. Feil, U. Krause, S. Arrivault, D. Vosloh, C. M. Figueroa, A. Ivakov, et al. (2013)
Plant Physiology 163, 1142-1163
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clocks by Redox Homeostasis.
A. Stangherlin and A. B. Reddy (2013)
J. Biol. Chem. 288, 26505-26511
   Abstract »    Full Text »    PDF »
Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods.
A. Lepisto, E. Pakula, J. Toivola, A. Krieger-Liszkay, F. Vignols, and E. Rintamaki (2013)
J. Exp. Bot. 64, 3843-3854
   Abstract »    Full Text »    PDF »
Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells?.
S. Aliniaeifard and U. van Meeteren (2013)
J. Exp. Bot. 64, 3551-3566
   Abstract »    Full Text »    PDF »
Socially synchronized circadian oscillators.
G. Bloch, E. D. Herzog, J. D. Levine, and W. J. Schwartz (2013)
Proc R Soc B 280, 20130035
   Abstract »    Full Text »    PDF »
Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch.
X. Johnson and J. Alric (2013)
Eukaryot. Cell 12, 776-793
   Abstract »    Full Text »    PDF »
Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae.
M. Sorek, Y. Z. Yacobi, M. Roopin, I. Berman-Frank, and O. Levy (2013)
Proc R Soc B 280, 20122942
   Abstract »    Full Text »    PDF »
Sweet immunity in the plant circadian regulatory network.
M. R. Bolouri Moghaddam and W. Van den Ende (2013)
J. Exp. Bot. 64, 1439-1449
   Abstract »    Full Text »    PDF »
Integration of Genome-Scale Modeling and Transcript Profiling Reveals Metabolic Pathways Underlying Light and Temperature Acclimation in Arabidopsis.
N. Topfer, C. Caldana, S. Grimbs, L. Willmitzer, A. R. Fernie, and Z. Nikoloski (2013)
PLANT CELL 25, 1197-1211
   Abstract »    Full Text »    PDF »
Circadian Control of Chloroplast Transcription by a Nuclear-Encoded Timing Signal.
Z. B. Noordally, K. Ishii, K. A. Atkins, S. J. Wetherill, J. Kusakina, E. J. Walton, M. Kato, M. Azuma, K. Tanaka, M. Hanaoka, et al. (2013)
Science 339, 1316-1319
   Abstract »    Full Text »    PDF »
Running a little late: chloroplast Fe status and the circadian clock.
G. T. Wilson and E. L. Connolly (2013)
EMBO J. 32, 490-492
   Full Text »    PDF »
Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function.
P. A. Salome, M. Oliva, D. Weigel, and U. Kramer (2013)
EMBO J. 32, 511-523
   Abstract »    Full Text »    PDF »
Enhanced entrainability of genetic oscillators by period mismatch.
Y. Hasegawa and M. Arita (2013)
J R Soc Interface 10, 20121020
   Abstract »    Full Text »    PDF »
Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis.
S. Hong, S. A. Kim, M. L. Guerinot, and C. R. McClung (2013)
Plant Physiology 161, 893-903
   Abstract »    Full Text »    PDF »
Interactions between the circadian clock and metabolism: there are good times and bad times.
M. Shi and X. Zheng (2013)
Acta Biochim Biophys Sin 45, 61-69
   Abstract »    Full Text »    PDF »
The Circadian Clock-Associated Small GTPase LIGHT INSENSITIVE PERIOD1 Suppresses Light-Controlled Endoreplication and Affects Tolerance to Salt Stress in Arabidopsis.
K. Terecskei, R. Toth, P. Gyula, E. Kevei, J. Bindics, G. Coupland, F. Nagy, and L. Kozma-Bognar (2013)
Plant Physiology 161, 278-290
   Abstract »    Full Text »    PDF »
Circadian Clock Regulates Dynamic Chromatin Modifications Associated with Arabidopsis CCA1/LHY and TOC1 Transcriptional Rhythms.
H. Hemmes, R. Henriques, I.-C. Jang, S. Kim, and N.-H. Chua (2012)
Plant Cell Physiol. 53, 2016-2029
   Abstract »    Full Text »    PDF »
Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects.
M. A. Jones, B. A. Williams, J. McNicol, C. G. Simpson, J. W. S. Brown, and S. L. Harmer (2012)
PLANT CELL 24, 4066-4082
   Abstract »    Full Text »    PDF »
Digital clocks: simple Boolean models can quantitatively describe circadian systems.
O. E. Akman, S. Watterson, A. Parton, N. Binns, A. J. Millar, and P. Ghazal (2012)
J R Soc Interface 9, 2365-2382
   Abstract »    Full Text »    PDF »
Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods.
A. Lepisto and E. Rintamaki (2012)
Mol Plant 5, 799-816
   Abstract »    Full Text »    PDF »
A Self-Regulatory Circuit of CIRCADIAN CLOCK-ASSOCIATED1 Underlies the Circadian Clock Regulation of Temperature Responses in Arabidopsis.
P. J. Seo, M.-J. Park, M.-H. Lim, S.-G. Kim, M. Lee, I. T. Baldwin, and C.-M. Park (2012)
PLANT CELL 24, 2427-2442
   Abstract »    Full Text »    PDF »
TIME FOR COFFEE Represses Accumulation of the MYC2 Transcription Factor to Provide Time-of-Day Regulation of Jasmonate Signaling in Arabidopsis.
J. Shin, K. Heidrich, A. Sanchez-Villarreal, J. E. Parker, and S. J. Davis (2012)
PLANT CELL 24, 2470-2482
   Abstract »    Full Text »    PDF »
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.
S. Faure, A. S. Turner, D. Gruszka, V. Christodoulou, S. J. Davis, M. von Korff, and D. A. Laurie (2012)
PNAS 109, 8328-8333
   Abstract »    Full Text »    PDF »
Time for a Nuclear Meeting: Protein Trafficking and Chromatin Dynamics Intersect in the Plant Circadian System.
E. Herrero and S. J. Davis (2012)
Mol Plant 5, 554-565
   Abstract »    Full Text »    PDF »
Quantitative Variation in Water-Use Efficiency across Water Regimes and Its Relationship with Circadian, Vegetative, Reproductive, and Leaf Gas-Exchange Traits.
C. E. Edwards, B. E. Ewers, C. R. McClung, P. Lou, and C. Weinig (2012)
Mol Plant 5, 653-668
   Abstract »    Full Text »    PDF »
GIGANTEA and EARLY FLOWERING 4 in Arabidopsis Exhibit Differential Phase-Specific Genetic Influences over a Diurnal Cycle.
Y. Kim, M. Yeom, H. Kim, J. Lim, H. J. Koo, D. Hwang, D. Somers, and H. G. Nam (2012)
Mol Plant 5, 678-687
   Abstract »    Full Text »    PDF »
Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?.
T. Ruts, S. Matsubara, A. Wiese-Klinkenberg, and A. Walter (2012)
J. Exp. Bot. 63, 3339-3351
   Abstract »    Full Text »    PDF »
Multi-dimensional regulation of metabolic networks shaping plant development and performance.
R. Kooke and J. J. B. Keurentjes (2012)
J. Exp. Bot. 63, 3353-3365
   Abstract »    Full Text »    PDF »
Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components.
S. Hunt, M. Elvin, and C. Heintzen (2012)
Genetics 191, 119-131
   Abstract »    Full Text »    PDF »
Ploidy and Hybridity Effects on Growth Vigor and Gene Expression in Arabidopsis thaliana Hybrids and Their Parents.
M. Miller, C. Zhang, and Z. J. Chen (2012)
g3 2, 505-513
   Abstract »    Full Text »    PDF »
Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes.
A. B. James, N. H. Syed, S. Bordage, J. Marshall, G. A. Nimmo, G. I. Jenkins, P. Herzyk, J. W. S. Brown, and H. G. Nimmo (2012)
PLANT CELL 24, 961-981
   Abstract »    Full Text »    PDF »
EARLY FLOWERING4 Recruitment of EARLY FLOWERING3 in the Nucleus Sustains the Arabidopsis Circadian Clock.
E. Herrero, E. Kolmos, N. Bujdoso, Y. Yuan, M. Wang, M. C. Berns, H. Uhlworm, G. Coupland, R. Saini, M. Jaskolski, et al. (2012)
PLANT CELL 24, 428-443
   Abstract »    Full Text »    PDF »
Understanding chilling responses in Arabidopsis seeds and their contribution to life history.
S. Penfield and V. Springthorpe (2012)
Phil Trans R Soc B 367, 291-297
   Abstract »    Full Text »    PDF »
A Role for Protein Kinase Casein Kinase2 {alpha}-Subunits in the Arabidopsis Circadian Clock.
S. X. Lu, H. Liu, S. M. Knowles, J. Li, L. Ma, E. M. Tobin, and C. Lin (2011)
Plant Physiology 157, 1537-1545
   Abstract »    Full Text »    PDF »
HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
T.-s. Kim, W. Y. Kim, S. Fujiwara, J. Kim, J.-Y. Cha, J. H. Park, S. Y. Lee, and D. E. Somers (2011)
PNAS 108, 16843-16848
   Abstract »    Full Text »    PDF »
Environmental Memory from a Circadian Oscillator: The Arabidopsis thaliana Clock Differentially Integrates Perception of Photic vs. Thermal Entrainment.
E. Boikoglou, Z. Ma, M. von Korff, A. M. Davis, F. Nagy, and S. J. Davis (2011)
Genetics 189, 655-664
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
The Genetic Architecture of Ecophysiological and Circadian Traits in Brassica rapa.
C. E. Edwards, B. E. Ewers, D. G. Williams, Q. Xie, P. Lou, X. Xu, C. R. McClung, and C. Weinig (2011)
Genetics 189, 375-390
   Abstract »    Full Text »    PDF »
A Reduced-Function Allele Reveals That EARLY FLOWERING3 Repressive Action on the Circadian Clock Is Modulated by Phytochrome Signals in Arabidopsis.
E. Kolmos, E. Herrero, N. Bujdoso, A. J. Millar, R. Toth, P. Gyula, F. Nagy, and S. J. Davis (2011)
PLANT CELL 23, 3230-3246
   Abstract »    Full Text »    PDF »
Characterization of Oncidium 'Gower Ramsey' Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time.
Y.-Y. Chang, Y.-W. Chu, C.-W. Chen, W.-M. Leu, H.-F. Hsu, and C.-H. Yang (2011)
Plant Cell Physiol. 52, 1532-1545
   Abstract »    Full Text »    PDF »
Fitness costs of disrupting circadian rhythms in malaria parasites.
A. J. O'Donnell, P. Schneider, H. G. McWatters, and S. E. Reece (2011)
Proc R Soc B 278, 2429-2436
   Abstract »    Full Text »    PDF »
Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics.
F. Pantin, T. Simonneau, G. Rolland, M. Dauzat, and B. Muller (2011)
Plant Physiology 156, 803-815
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field.
T. Izawa, M. Mihara, Y. Suzuki, M. Gupta, H. Itoh, A. J. Nagano, R. Motoyama, Y. Sawada, M. Yano, M. Y. Hirai, et al. (2011)
PLANT CELL 23, 1741-1755
   Abstract »    Full Text »    PDF »
Interactions between plant circadian clocks and solute transport.
M. J. Haydon, L. J. Bell, and A. A. R. Webb (2011)
J. Exp. Bot. 62, 2333-2348
   Abstract »    Full Text »    PDF »
Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock.
M. Johansson, H. G. McWatters, L. Bako, N. Takata, P. Gyula, A. Hall, D. E. Somers, A. J. Millar, and M. E. Eriksson (2011)
Plant Physiology 155, 2108-2122
   Abstract »    Full Text »    PDF »
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd, M. J. Gardner, M. A. Stancombe, M. J. Haydon, G.-B. Stan, J. M. Goncalves, et al. (2011)
PNAS 108, 5104-5109
   Abstract »    Full Text »    PDF »
Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor.
J. d. D. Barajas-Lopez, A. J. Serrato, R. Cazalis, Y. Meyer, A. Chueca, J. P. Reichheld, and M. Sahrawy (2011)
J. Exp. Bot. 62, 2039-2051
   Abstract »    Full Text »    PDF »
BROTHER OF LUX ARRHYTHMO Is a Component of the Arabidopsis Circadian Clock.
S. Dai, X. Wei, L. Pei, R. L. Thompson, Y. Liu, J. E. Heard, T. G. Ruff, and R. N. Beachy (2011)
PLANT CELL 23, 961-972
   Abstract »    Full Text »    PDF »
Growth of Chrysanthemum in Response to Supplemental Light Provided by Irregular Light Breaks during the Night.
K. H. Kjaer and C.-O. Ottosen (2011)
J. Amer. Soc. Hort. Sci. 136, 3-9
   Abstract »    Full Text »    PDF »
Circadian Clocks in Fuel Harvesting and Energy Homeostasis.
K. M. Ramsey and J. Bass (2011)
Cold Spring Harb Symp Quant Biol 76, 63-72
   Abstract »    Full Text »    PDF »
EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.
W. Wang, D. Yang, and K. A. Feldmann (2011)
J. Exp. Bot. 62, 1077-1088
   Abstract »    Full Text »    PDF »
Jumonji domain protein JMJD5 functions in both the plant and human circadian systems.
M. A. Jones, M. F. Covington, L. DiTacchio, C. Vollmers, S. Panda, and S. L. Harmer (2010)
PNAS 107, 21623-21628
   Abstract »    Full Text »    PDF »
Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.
S. Hong, H.-R. Song, K. Lutz, R. A. Kerstetter, T. P. Michael, and C. R. McClung (2010)
PNAS 107, 21211-21216
   Abstract »    Full Text »    PDF »
Circadian Integration of Metabolism and Energetics.
J. Bass and J. S. Takahashi (2010)
Science 330, 1349-1354
   Abstract »    Full Text »    PDF »
Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice.
G.-S. Song, H.-L. Zhai, Y.-G. Peng, L. Zhang, G. Wei, X.-Y. Chen, Y.-G. Xiao, L. Wang, Y.-J. Chen, B. Wu, et al. (2010)
Mol Plant 3, 1012-1025
   Abstract »    Full Text »    PDF »
Association between mammalian lifespan and circadian free-running period: the circadian resonance hypothesis revisited.
C. A. Wyse, A. N. Coogan, C. Selman, D. G. Hazlerigg, and J. R. Speakman (2010)
Biol Lett 6, 696-698
   Abstract »    Full Text »    PDF »
Modeling a Circadian Surface.
T. Roenneberg, J. Remi, and M. Merrow (2010)
J Biol Rhythms 25, 340-349
   Abstract »    PDF »
Plant Biology in the Fourth Dimension.
S. Harmer (2010)
Plant Physiology 154, 467-470
   Full Text »    PDF »
Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts.
J. Kim and D. E. Somers (2010)
Plant Physiology 154, 611-621
   Abstract »    Full Text »    PDF »
Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees.
C. Ibanez, I. Kozarewa, M. Johansson, E. Ogren, A. Rohde, and M. E. Eriksson (2010)
Plant Physiology 153, 1823-1833
   Abstract »    Full Text »    PDF »
Correct biological timing in Arabidopsis requires multiple light-signaling pathways.
N. Dalchau, K. E. Hubbard, F. C. Robertson, C. T. Hotta, H. M. Briggs, G.-B. Stan, J. M. Goncalves, and A. A. R. Webb (2010)
PNAS 107, 13171-13176
   Abstract »    Full Text »    PDF »
PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock.
L. Wang, S. Fujiwara, and D. E. Somers (2010)
EMBO J. 29, 1903-1915
   Abstract »    Full Text »    PDF »
Circadian control of carbohydrate availability for growth in Arabidopsis plants at night.
A. Graf, A. Schlereth, M. Stitt, and A. M. Smith (2010)
PNAS 107, 9458-9463
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882