Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5736): 897-903

Copyright © 2005 by the American Association for the Advancement of Science

Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel

Stephen B. Long, Ernest B. Campbell, Roderick MacKinnon*

Abstract: Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase ß subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and ß subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the ß subunit.

Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

* To whom correspondence should be addressed. E-mail: mackinn{at}rockefeller.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia.
N. Schmitt, M. Grunnet, and S.-P. Olesen (2014)
Physiol Rev 94, 609-653
   Abstract »    Full Text »    PDF »
Long {alpha} helices projecting from the membrane as the dimer interface in the voltage-gated H+ channel.
Y. Fujiwara, T. Kurokawa, and Y. Okamura (2014)
J. Gen. Physiol. 143, 377-386
   Abstract »    Full Text »    PDF »
Conopeptide Vt3.1 Preferentially Inhibits BK Potassium Channels Containing {beta}4 Subunits via Electrostatic Interactions.
M. Li, S. Chang, L. Yang, J. Shi, K. McFarland, X. Yang, A. Moller, C. Wang, X. Zou, C. Chi, et al. (2014)
J. Biol. Chem. 289, 4735-4742
   Abstract »    Full Text »    PDF »
Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation.
H. Lee, M.-c. A. Lin, H. I. Kornblum, D. M. Papazian, and S. F. Nelson (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Lipid Bilayer Modules as Determinants of K+ Channel Gating.
R. Syeda, J. S. Santos, and M. Montal (2014)
J. Biol. Chem. 289, 4233-4243
   Abstract »    Full Text »    PDF »
Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel.
I. Kim and A. Warshel (2014)
PNAS 111, 2128-2133
   Abstract »    Full Text »    PDF »
Dynamics transitions at the outer vestibule of the KcsA potassium channel during gating.
H. Raghuraman, S. M. Islam, S. Mukherjee, B. Roux, and E. Perozo (2014)
PNAS 111, 1831-1836
   Abstract »    Full Text »    PDF »
Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process.
L. Garneau, H. Klein, M.-F. Lavoie, E. Brochiero, L. Parent, and R. Sauve (2014)
J. Gen. Physiol. 143, 289-307
   Abstract »    Full Text »    PDF »
Inherited Pain: SODIUM CHANNEL NAV1.7 A1632T MUTATION CAUSES ERYTHROMELALGIA DUE TO A SHIFT OF FAST INACTIVATION.
M. Eberhardt, J. Nakajima, A. B. Klinger, C. Neacsu, K. Huhne, A. O. O'Reilly, A. M. Kist, A. K. Lampe, K. Fischer, J. Gibson, et al. (2014)
J. Biol. Chem. 289, 1971-1980
   Abstract »    Full Text »    PDF »
Divalent cations activate TRPV1 through promoting conformational change of the extracellular region.
F. Yang, L. Ma, X. Cao, K. Wang, and J. Zheng (2014)
J. Gen. Physiol. 143, 91-103
   Abstract »    Full Text »    PDF »
Structure and function of voltage-gated sodium channels at atomic resolution.
W. A. Catterall (2014)
Exp Physiol 99, 35-51
   Abstract »    Full Text »    PDF »
Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels.
S. A. Pless, J. D. Galpin, A. P. Niciforovic, H. T. Kurata, and C. A. Ahern (2013)
eLife Sci 2, e01289
   Abstract »    Full Text »    PDF »
Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating.
Q. Zhang, P. Zhou, Z. Chen, M. Li, H. Jiang, Z. Gao, and H. Yang (2013)
PNAS 110, 20093-20098
   Abstract »    Full Text »    PDF »
Heme impairs the ball-and-chain inactivation of potassium channels.
N. Sahoo, N. Goradia, O. Ohlenschlager, R. Schonherr, M. Friedrich, W. Plass, R. Kappl, T. Hoshi, and S. H. Heinemann (2013)
PNAS 110, E4036-E4044
   Abstract »    Full Text »    PDF »
Cooperative Activation of the T-type CaV3.2 Channel: INTERACTION BETWEEN DOMAINS II AND III.
P.-O. Demers-Giroux, B. Bourdin, R. Sauve, and L. Parent (2013)
J. Biol. Chem. 288, 29281-29293
   Abstract »    Full Text »    PDF »
Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations.
F. Khalili-Araghi, B. Ziervogel, J. C. Gumbart, and B. Roux (2013)
J. Gen. Physiol. 142, 465-475
   Abstract »    Full Text »    PDF »
Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state.
P. K. Devaraneni, A. G. Komarov, C. A. Costantino, J. J. Devereaux, K. Matulef, and F. I. Valiyaveetil (2013)
PNAS 110, 15698-15703
   Abstract »    Full Text »    PDF »
Functional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels.
Y. M. Cheng, C. M. Hull, C. M. Niven, J. Qi, C. R. Allard, and T. W. Claydon (2013)
J. Gen. Physiol. 142, 289-303
   Abstract »    Full Text »    PDF »
A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb.
T. M. Gamal El-Din, G. Q. Martinez, J. Payandeh, T. Scheuer, and W. A. Catterall (2013)
J. Gen. Physiol. 142, 181-190
   Abstract »    Full Text »    PDF »
Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.
M. A. Zaydman, J. R. Silva, K. Delaloye, Y. Li, H. Liang, H. P. Larsson, J. Shi, and J. Cui (2013)
PNAS 110, 13180-13185
   Abstract »    Full Text »    PDF »
Asynchronous Movements Prior to Pore Opening in NMDA Receptors.
R. Kazi, Q. Gan, I. Talukder, M. Markowitz, C. L. Salussolia, and L. P. Wollmuth (2013)
J. Neurosci. 33, 12052-12066
   Abstract »    Full Text »    PDF »
Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel.
Y. Du, Y. Nomura, G. Satar, Z. Hu, R. Nauen, S. Y. He, B. S. Zhorov, and K. Dong (2013)
PNAS 110, 11785-11790
   Abstract »    Full Text »    PDF »
CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.
G. Dai and M. D. Varnum (2013)
Am J Physiol Cell Physiol 305, C147-C159
   Abstract »    Full Text »    PDF »
Catalysis of Na+ permeation in the bacterial sodium channel NaVAb.
N. Chakrabarti, C. Ing, J. Payandeh, N. Zheng, W. A. Catterall, and R. Pomes (2013)
PNAS 110, 11331-11336
   Abstract »    Full Text »    PDF »
The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1).
S. L. Morales-Lazaro, S. A. Simon, and T. Rosenbaum (2013)
J. Physiol. 591, 3109-3121
   Abstract »    Full Text »    PDF »
Investigations of the Contribution of a Putative Glycine Hinge to Ryanodine Receptor Channel Gating.
J. Euden, S. A. Mason, C. Viero, N. L. Thomas, and A. J. Williams (2013)
J. Biol. Chem. 288, 16671-16679
   Abstract »    Full Text »    PDF »
Stabilization of the Conductive Conformation of a Voltage-gated K+ (Kv) Channel: THE LID MECHANISM.
J. S. Santos, R. Syeda, and M. Montal (2013)
J. Biol. Chem. 288, 16619-16628
   Abstract »    Full Text »    PDF »
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid.
T. Kalstrup and R. Blunck (2013)
PNAS 110, 8272-8277
   Abstract »    Full Text »    PDF »
Differential hERG ion channel activity of ultrasmall gold nanoparticles.
A. Leifert, Y. Pan, A. Kinkeldey, F. Schiefer, J. Setzler, O. Scheel, H. Lichtenbeld, G. Schmid, W. Wenzel, W. Jahnen-Dechent, et al. (2013)
PNAS 110, 8004-8009
   Abstract »    Full Text »    PDF »
Two Conserved Arginine Residues from the SK3 Potassium Channel Outer Vestibule Control Selectivity of Recognition by Scorpion Toxins.
J. Feng, Y. Hu, H. Yi, S. Yin, S. Han, J. Hu, Z. Chen, W. Yang, Z. Cao, M. De Waard, et al. (2013)
J. Biol. Chem. 288, 12544-12553
   Abstract »    Full Text »    PDF »
Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels.
J. Barry, M. Xu, Y. Gu, A. W. Dangel, P. Jukkola, C. Shrestha, and C. Gu (2013)
J. Cell Sci. 126, 2027-2041
   Abstract »    Full Text »    PDF »
Atomic-level simulation of current-voltage relationships in single-file ion channels.
M. O. Jensen, V. Jogini, M. P. Eastwood, and D. E. Shaw (2013)
J. Gen. Physiol. 141, 619-632
   Abstract »    Full Text »    PDF »
Pore Helices Play a Dynamic Role as Integrators of Domain Motion during Kv11.1 Channel Inactivation Gating.
M. D. Perry, C. A. Ng, and J. I. Vandenberg (2013)
J. Biol. Chem. 288, 11482-11491
   Abstract »    Full Text »    PDF »
Fine-tuning of Voltage Sensitivity of the Kv1.2 Potassium Channel by Interhelix Loop Dynamics.
R. Sand, N. Sharmin, C. Morgan, and W. J. Gallin (2013)
J. Biol. Chem. 288, 9686-9695
   Abstract »    Full Text »    PDF »
Computational Methods of Studying the Binding of Toxins From Venomous Animals to Biological Ion Channels: Theory and Applications.
D. Gordon, R. Chen, and S.-H. Chung (2013)
Physiol Rev 93, 767-802
   Abstract »    Full Text »    PDF »
The electric heart of hERG.
L. D. Islas (2013)
J. Gen. Physiol. 141, 409-411
   Full Text »    PDF »
Inhibition of Neuronal Degenerin/Epithelial Na+ Channels by the Multiple Sclerosis Drug 4-Aminopyridine.
N. Boiko, V. Kucher, B. A. Eaton, and J. D. Stockand (2013)
J. Biol. Chem. 288, 9418-9427
   Abstract »    Full Text »    PDF »
Molecular mechanism of voltage sensing in voltage-gated proton channels.
C. Gonzalez, S. Rebolledo, M. E. Perez, and H. P. Larsson (2013)
J. Gen. Physiol. 141, 275-285
   Abstract »    Full Text »    PDF »
The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state.
I. Kopljar, A. J. Labro, T. de Block, J. D. Rainier, J. Tytgat, and D. J. Snyders (2013)
J. Gen. Physiol. 141, 359-369
   Abstract »    Full Text »    PDF »
Structural Determinants of Skeletal Muscle Ryanodine Receptor Gating.
S. Ramachandran, A. Chakraborty, L. Xu, Y. Mei, M. Samso, N. V. Dokholyan, and G. Meissner (2013)
J. Biol. Chem. 288, 6154-6165
   Abstract »    Full Text »    PDF »
Regulation of Ion Channels by Pyridine Nucleotides.
P. J. Kilfoil, S. M. Tipparaju, O. A. Barski, and A. Bhatnagar (2013)
Circ. Res. 112, 721-741
   Abstract »    Full Text »    PDF »
An Allosteric Mechanism for Drug Block of the Human Cardiac Potassium Channel KCNQ1.
T. Yang, J. A. Smith, B. F. Leake, C. R. Sanders, J. Meiler, and D. M. Roden (2013)
Mol. Pharmacol. 83, 481-489
   Abstract »    Full Text »    PDF »
Free-energy relationships in ion channels activated by voltage and ligand.
S. Chowdhury and B. Chanda (2012)
J. Gen. Physiol. 141, 11-28
   Abstract »    Full Text »    PDF »
Positions of {beta}2 and {beta}3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel.
R. S. Wu, G. Liu, S. I. Zakharov, N. Chudasama, H. Motoike, A. Karlin, and S. O. Marx (2012)
J. Gen. Physiol. 141, 105-117
   Abstract »    Full Text »    PDF »
Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations.
C. Amaral, V. Carnevale, M. L. Klein, and W. Treptow (2012)
PNAS 109, 21336-21341
   Abstract »    Full Text »    PDF »
Unraveling the strokes of ion channel molecular machines in computers.
E. Lindahl (2012)
PNAS 109, 21186-21187
   Full Text »    PDF »
Three-Dimensional Localization of the {alpha} and {beta} Subunits and of the II-III Loop in the Skeletal Muscle L-type Ca2+ Channel.
J. Szpyt, N. Lorenzon, C. F. Perez, E. Norris, P. D. Allen, K. G. Beam, and M. Samso (2012)
J. Biol. Chem. 287, 43853-43861
   Abstract »    Full Text »    PDF »
Crystal Structure of a Voltage-gated K+ Channel Pore Module in a Closed State in Lipid Membranes.
J. S. Santos, G. A. Asmar-Rovira, G. W. Han, W. Liu, R. Syeda, V. Cherezov, K. A. Baker, R. C. Stevens, and M. Montal (2012)
J. Biol. Chem. 287, 43063-43070
   Abstract »    Full Text »    PDF »
Crystal Structure of the Calcium Release-Activated Calcium Channel Orai.
X. Hou, L. Pedi, M. M. Diver, and S. B. Long (2012)
Science 338, 1308-1313
   Abstract »    Full Text »    PDF »
Intermediate state trapping of a voltage sensor.
J. J. Lacroix, S. A. Pless, L. Maragliano, F. V. Campos, J. D. Galpin, C. A. Ahern, B. Roux, and F. Bezanilla (2012)
J. Gen. Physiol. 140, 635-652
   Abstract »    Full Text »    PDF »
Perspectives on: Conformational coupling in ion channels: Thermodynamics of electromechanical coupling in voltage-gated ion channels.
S. Chowdhury and B. Chanda (2012)
J. Gen. Physiol. 140, 613-623
   Full Text »    PDF »
Perspectives on: Conformational coupling in ion channels: Conformational coupling in BK potassium channels.
F. T. Horrigan (2012)
J. Gen. Physiol. 140, 625-634
   Abstract »    Full Text »    PDF »
A Leucine Zipper Motif Essential for Gating of Hyperpolarization-activated Channels.
K. Wemhoner, N. Silbernagel, S. Marzian, M. F. Netter, S. Rinne, P. J. Stansfeld, and N. Decher (2012)
J. Biol. Chem. 287, 40150-40160
   Abstract »    Full Text »    PDF »
A Limited 4 A Radial Displacement of the S4-S5 Linker Is Sufficient for Internal Gate Closing in Kv Channels.
E. Faure, G. Starek, H. McGuire, S. Berneche, and R. Blunck (2012)
J. Biol. Chem. 287, 40091-40098
   Abstract »    Full Text »    PDF »
Molecular mechanism for depolarization-induced modulation of Kv channel closure.
A. J. Labro, J. J. Lacroix, C. A. Villalba-Galea, D. J. Snyders, and F. Bezanilla (2012)
J. Gen. Physiol. 140, 481-493
   Abstract »    Full Text »    PDF »
Unlocking the mechanisms of HCN channel gating with locked-open and locked-closed channels.
M. C. Trudeau (2012)
J. Gen. Physiol. 140, 457-461
   Full Text »    PDF »
Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations.
S. J. Goodchild, H. Xu, Z. Es-Salah-Lamoureux, C. A. Ahern, and D. Fedida (2012)
J. Gen. Physiol. 140, 495-511
   Abstract »    Full Text »    PDF »
Tetrameric assembly of KvLm K+ channels with defined numbers of voltage sensors.
R. Syeda, J. S. Santos, M. Montal, and H. Bayley (2012)
PNAS 109, 16917-16922
   Abstract »    Full Text »    PDF »
A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions.
A. Marchesi, M. Mazzolini, and V. Torre (2012)
J. Physiol. 590, 5075-5090
   Abstract »    Full Text »    PDF »
The Hodgkin-Huxley Heritage: From Channels to Circuits.
W. A. Catterall, I. M. Raman, H. P. C. Robinson, T. J. Sejnowski, and O. Paulsen (2012)
J. Neurosci. 32, 14064-14073
   Abstract »    Full Text »    PDF »
KCNQ1 Channels Do Not Undergo Concerted but Sequential Gating Transitions in Both the Absence and the Presence of KCNE1 Protein.
E. Meisel, M. Dvir, Y. Haitin, M. Giladi, A. Peretz, and B. Attali (2012)
J. Biol. Chem. 287, 34212-34224
   Abstract »    Full Text »    PDF »
PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker.
A. A. Rodriguez-Menchaca, S. K. Adney, Q.-Y. Tang, X.-Y. Meng, A. Rosenhouse-Dantsker, M. Cui, and D. E. Logothetis (2012)
PNAS 109, E2399-E2408
   Abstract »    Full Text »    PDF »
Mapping the Interaction Site for a {beta}-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels.
J. Z. Zhang, V. Yarov-Yarovoy, T. Scheuer, I. Karbat, L. Cohen, D. Gordon, M. Gurevitz, and W. A. Catterall (2012)
J. Biol. Chem. 287, 30719-30728
   Abstract »    Full Text »    PDF »
Structural changes during HCN channel gating defined by high affinity metal bridges.
D. C. H. Kwan, D. L. Prole, and G. Yellen (2012)
J. Gen. Physiol. 140, 279-291
   Abstract »    Full Text »    PDF »
Structural insights into neuronal K+ channel-calmodulin complexes.
K. Mruk, S. M. D. Shandilya, R. O. Blaustein, C. A. Schiffer, and W. R. Kobertz (2012)
PNAS 109, 13579-13583
   Abstract »    Full Text »    PDF »
Structure-Guided Topographic Mapping and Mutagenesis to Elucidate Binding Sites for the Human Ether-a-Go-Go-Related Gene 1 Potassium Channel (KCNH2) Activator NS1643.
S. Durdagi, J. Guo, J. P. Lees-Miller, S. Y. Noskov, and H. J. Duff (2012)
J. Pharmacol. Exp. Ther. 342, 441-452
   Abstract »    Full Text »    PDF »
Localization of a Site of Action for Benzofuroindole-Induced Potentiation of BKCa Channels.
B.-C. Lee, H.-H. Lim, S. Kim, H.-S. Youn, Y. Lee, Y.-C. Kim, S. H. Eom, K. W. Lee, and C.-S. Park (2012)
Mol. Pharmacol. 82, 143-155
   Abstract »    Full Text »    PDF »
Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore-quencher pairing.
A. Pantazis and R. Olcese (2012)
J. Gen. Physiol. 140, 207-218
   Abstract »    Full Text »    PDF »
hERG K+ Channels: Structure, Function, and Clinical Significance.
J. I. Vandenberg, M. D. Perry, M. J. Perrin, S. A. Mann, Y. Ke, and A. P. Hill (2012)
Physiol Rev 92, 1393-1478
   Abstract »    Full Text »    PDF »
Voltage-sensor cycle fully described.
C. Domene (2012)
PNAS 109, 8362-8363
   Full Text »    PDF »
Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels.
J. D. Osteen, R. Barro-Soria, S. Robey, K. J. Sampson, R. S. Kass, and H. P. Larsson (2012)
PNAS 109, 7103-7108
   Abstract »    Full Text »    PDF »
Clinicopathological and Biological Significance of Human Voltage-gated Proton Channel Hv1 Protein Overexpression in Breast Cancer.
Y. Wang, S. J. Li, X. Wu, Y. Che, and Q. Li (2012)
J. Biol. Chem. 287, 13877-13888
   Abstract »    Full Text »    PDF »
Electrically Silent Kv Subunits: Their Molecular and Functional Characteristics.
E. Bocksteins and D. J. Snyders (2012)
Physiology 27, 73-84
   Abstract »    Full Text »    PDF »
Selectivity filter gating in large-conductance Ca2+-activated K+ channels.
J. Thompson and T. Begenisich (2012)
J. Gen. Physiol. 139, 235-244
   Abstract »    Full Text »    PDF »
Mice expressing T4826I-RYR1 are viable but exhibit sex- and genotype-dependent susceptibility to malignant hyperthermia and muscle damage.
B. Yuen, S. Boncompagni, W. Feng, T. Yang, J. R. Lopez, K. I. Matthaei, S. R. Goth, F. Protasi, C. Franzini-Armstrong, P. D. Allen, et al. (2012)
FASEB J 26, 1311-1322
   Abstract »    Full Text »    PDF »
Realistic simulation of the activation of voltage-gated ion channels.
A. Dryga, S. Chakrabarty, S. Vicatos, and A. Warshel (2012)
PNAS 109, 3335-3340
   Abstract »    Full Text »    PDF »
RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses.
S. Garrett and J. J. C. Rosenthal (2012)
Science 335, 848-851
   Abstract »    Full Text »    PDF »
Building Excitable Membranes: Lipid Rafts and Multiple Controls on Trafficking of Electrogenic Molecules.
A. Pristera and K. Okuse (2012)
Neuroscientist 18, 70-81
   Abstract »    Full Text »    PDF »
Crystal Structure of the Human Two-Pore Domain Potassium Channel K2P1.
A. N. Miller and S. B. Long (2012)
Science 335, 432-436
   Abstract »    Full Text »    PDF »
Gene Dose Influences Cellular and Calcium Channel Dysregulation in Heterozygous and Homozygous T4826I-RYR1 Malignant Hyperthermia-susceptible Muscle.
G. C. Barrientos, W. Feng, K. Truong, K. I. Matthaei, T. Yang, P. D. Allen, J. R. Lopez, and I. N. Pessah (2012)
J. Biol. Chem. 287, 2863-2876
   Abstract »    Full Text »    PDF »
Structural basis for gating charge movement in the voltage sensor of a sodium channel.
V. Yarov-Yarovoy, P. G. DeCaen, R. E. Westenbroek, C.-Y. Pan, T. Scheuer, D. Baker, and W. A. Catterall (2012)
PNAS 109, E93-E102
   Abstract »    Full Text »    PDF »
Targeting ion channels for the treatment of gastrointestinal motility disorders.
A. Beyder and G. Farrugia (2012)
Therapeutic Advances in Gastroenterology 5, 5-21
   Abstract »    PDF »
Distinct gating mechanisms revealed by the structures of a multi-ligand gated K+ channel.
C. Kong, W. Zeng, S. Ye, L. Chen, D. B. Sauer, Y. Lam, M. G. Derebe, and Y. Jiang (2012)
eLife Sci 1, e00184
   Abstract »    Full Text »    PDF »
The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators.
J. Almassy and T. Begenisich (2012)
Mol. Pharmacol. 81, 21-30
   Abstract »    Full Text »    PDF »
Interactions of Cations with the Cytoplasmic Pores of Inward Rectifier K+ Channels in the Closed State.
A. Inanobe, A. Nakagawa, and Y. Kurachi (2011)
J. Biol. Chem. 286, 41801-41811
   Abstract »    Full Text »    PDF »
The core domain as the force sensor of the yeast mechanosensitive TRP channel.
Z. Su, A. Anishkin, C. Kung, and Y. Saimi (2011)
J. Gen. Physiol. 138, 627-640
   Abstract »    Full Text »    PDF »
Mg2+ binding to open and closed states can activate BK channels provided that the voltage sensors are elevated.
R.-S. Chen, Y. Geng, and K. L. Magleby (2011)
J. Gen. Physiol. 138, 593-607
   Abstract »    Full Text »    PDF »
KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue.
K. Nakajo, A. Nishino, Y. Okamura, and Y. Kubo (2011)
J. Gen. Physiol. 138, 521-535
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882