Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5736): 943-947

Copyright © 2005 by the American Association for the Advancement of Science

Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

Tony K. T. Lam, Roger Gutierrez-Juarez, Alessandro Pocai, Luciano Rossetti*

Abstract: The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)–sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

* To whom correspondence should be addressed. E-mail: rossetti{at}aecom.yu.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
C1q/TNF-related Protein 4 (CTRP4) Is a Unique Secreted Protein with Two Tandem C1q Domains That Functions in the Hypothalamus to Modulate Food Intake and Body Weight.
M. S. Byerly, P. S. Petersen, S. Ramamurthy, M. M. Seldin, X. Lei, E. Provost, Z. Wei, G. V. Ronnett, and G. W. Wong (2014)
J. Biol. Chem. 289, 4055-4069
   Abstract »    Full Text »    PDF »
Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes.
B. Taib, K. Bouyakdan, C. Hryhorczuk, D. Rodaros, S. Fulton, and T. Alquier (2013)
J. Biol. Chem. 288, 37216-37229
   Abstract »    Full Text »    PDF »
Evidence for Central Regulation of Glucose Metabolism.
M. Carey, S. Kehlenbrink, and M. Hawkins (2013)
J. Biol. Chem. 288, 34981-34988
   Abstract »    Full Text »    PDF »
Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action.
K. Kimura, Y. Nakamura, Y. Inaba, M. Matsumoto, Y. Kido, S.-i. Asahara, T. Matsuda, H. Watanabe, A. Maeda, F. Inagaki, et al. (2013)
Diabetes 62, 2266-2277
   Abstract »    Full Text »    PDF »
Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats.
I. Arrieta-Cruz, Y. Su, C. M. Knight, T. K. T. Lam, and R. Gutierrez-Juarez (2013)
Diabetes 62, 1152-1158
   Abstract »    Full Text »    PDF »
Gliotransmission and Brain Glucose Sensing: Critical Role of Endozepines.
D. Lanfray, S. Arthaud, J. Ouellet, V. Compere, J.-L. Do Rego, J. Leprince, B. Lefranc, H. Castel, C. Bouchard, B. Monge-Roffarello, et al. (2013)
Diabetes 62, 801-810
   Abstract »    Full Text »    PDF »
Hypothalamic Leucine Metabolism Regulates Liver Glucose Production.
Y. Su, T. K. T. Lam, W. He, A. Pocai, J. Bryan, L. Aguilar-Bryan, and R. Gutierrez-Juarez (2012)
Diabetes 61, 85-93
   Abstract »    Full Text »    PDF »
Study of GPR81, the Lactate Receptor, from Distant Species Identifies Residues and Motifs Critical for GPR81 Functions.
C. Kuei, J. Yu, J. Zhu, J. Wu, L. Zhang, A. Shih, T. Mirzadegan, T. Lovenberg, and C. Liu (2011)
Mol. Pharmacol. 80, 848-858
   Abstract »    Full Text »    PDF »
NBCe1 Mediates the Acute Stimulation of Astrocytic Glycolysis by Extracellular K+.
I. Ruminot, R. Gutierrez, G. Pena-Munzenmayer, C. Anazco, T. Sotelo-Hitschfeld, R. Lerchundi, M. I. Niemeyer, G. E. Shull, and L. F. Barros (2011)
J. Neurosci. 31, 14264-14271
   Abstract »    Full Text »    PDF »
Glucose Transporter-1 in the Hypothalamic Glial Cells Mediates Glucose Sensing to Regulate Glucose Production In Vivo.
M. Chari, C. S. Yang, C. K. L. Lam, K. Lee, P. Mighiu, A. Kokorovic, G. W. C. Cheung, T. Y. Y. Lai, P. Y. T. Wang, and T. K. T. Lam (2011)
Diabetes 60, 1901-1906
   Abstract »    Full Text »    PDF »
In Vivo Evidence for Lactate as a Neuronal Energy Source.
M. T. Wyss, R. Jolivet, A. Buck, P. J. Magistretti, and B. Weber (2011)
J. Neurosci. 31, 7477-7485
   Abstract »    Full Text »    PDF »
Hypothalamic Nutrient Sensing Activates a Forebrain-Hindbrain Neuronal Circuit to Regulate Glucose Production In Vivo.
C. K. L. Lam, M. Chari, G. A. Rutter, and T. K. T. Lam (2011)
Diabetes 60, 107-113
   Abstract »    Full Text »    PDF »
Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production.
R. A. Ross, L. Rossetti, T. K. T. Lam, and G. J. Schwartz (2010)
Am J Physiol Endocrinol Metab 299, E633-E639
   Abstract »    Full Text »    PDF »
Hypothalamic AMP-Activated Protein Kinase Regulates Glucose Production.
C. S. Yang, C. K. L. Lam, M. Chari, G. W. C. Cheung, A. Kokorovic, S. Gao, I. Leclerc, G. A. Rutter, and T. K. T. Lam (2010)
Diabetes 59, 2435-2443
   Abstract »    Full Text »    PDF »
Activation of N-Methyl-D-aspartate (NMDA) Receptors in the Dorsal Vagal Complex Lowers Glucose Production.
C. K. L. Lam, M. Chari, B. B. Su, G. W. C. Cheung, A. Kokorovic, C. S. Yang, P. Y. T. Wang, T. Y. Y. Lai, and T. K. T. Lam (2010)
J. Biol. Chem. 285, 21913-21921
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 Action in the Brain Increases Energy Expenditure and Insulin Sensitivity in Obese Rats.
D. A. Sarruf, J. P. Thaler, G. J. Morton, J. German, J. D. Fischer, K. Ogimoto, and M. W. Schwartz (2010)
Diabetes 59, 1817-1824
   Abstract »    Full Text »    PDF »
Targeting Intermediary Metabolism in the Hypothalamus as a Mechanism to Regulate Appetite.
G. D. Lopaschuk, J. R. Ussher, and J. S. Jaswal (2010)
Pharmacol. Rev. 62, 237-264
   Abstract »    Full Text »    PDF »
High Fat and Highly Thermolyzed Fat Diets Promote Insulin Resistance and Increase DNA Damage in Rats.
A. M. de Assis, D. K. Rieger, A. Longoni, C. Battu, S. Raymundi, R. F. da Rocha, A. C. Andreazza, M. Farina, L. N. Rotta, C. Gottfried, et al. (2009)
Experimental Biology and Medicine 234, 1296-1304
   Abstract »    Full Text »    PDF »
CNS Regulation of Glucose Homeostasis.
C. K. L. Lam, M. Chari, and T. K. T. Lam (2009)
Physiology 24, 159-170
   Abstract »    Full Text »    PDF »
Biological Approaches to Mechanistically Understand the Healthy Life Span Extension Achieved by Calorie Restriction and Modulation of Hormones.
N. Barzilai and A. Bartke (2009)
J Gerontol A Biol Sci Med Sci
   Abstract »    Full Text »    PDF »
Lactate Inhibits Lipolysis in Fat Cells through Activation of an Orphan G-protein-coupled Receptor, GPR81.
C. Liu, J. Wu, J. Zhu, C. Kuei, J. Yu, J. Shelton, S. W. Sutton, X. Li, S. J. Yun, T. Mirzadegan, et al. (2009)
J. Biol. Chem. 284, 2811-2822
   Abstract »    Full Text »    PDF »
Hypothalamic Protein Kinase C Regulates Glucose Production.
R. Ross, P. Y.T. Wang, M. Chari, C. K.L. Lam, L. Caspi, H. Ono, E. D. Muse, X. Li, R. Gutierrez-Juarez, P. E. Light, et al. (2008)
Diabetes 57, 2061-2065
   Abstract »    Full Text »    PDF »
Arcuate Glucagon-Like Peptide 1 Receptors Regulate Glucose Homeostasis but Not Food Intake.
D. A. Sandoval, D. Bagnol, S. C. Woods, D. A. D'Alessio, and R. J. Seeley (2008)
Diabetes 57, 2046-2054
   Abstract »    Full Text »    PDF »
Central lactate metabolism regulates food intake.
C. K. L. Lam, M. Chari, P. Y. T. Wang, and T. K. T. Lam (2008)
Am J Physiol Endocrinol Metab 295, E491-E496
   Abstract »    Full Text »    PDF »
Inhibition of Monocarboxylate Transporter 2 in the Retrotrapezoid Nucleus in Rats: A Test of the Astrocyte-Neuron Lactate-Shuttle Hypothesis.
J. S. Erlichman, A. Hewitt, T. L. Damon, M. Hart, J. Kurascz, A. Li, and J. C. Leiter (2008)
J. Neurosci. 28, 4888-4896
   Abstract »    Full Text »    PDF »
Involvement of lactate in glucose metabolism and glucosensing function in selected tissues of rainbow trout.
S. Polakof and J. L. Soengas (2008)
J. Exp. Biol. 211, 1075-1086
   Abstract »    Full Text »    PDF »
Activation of Central Lactate Metabolism Lowers Glucose Production in Uncontrolled Diabetes and Diet-Induced Insulin Resistance.
M. Chari, C. K.L. Lam, P. Y.T. Wang, and T. K.T. Lam (2008)
Diabetes 57, 836-840
   Abstract »    Full Text »    PDF »
In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout.
S. Polakof, J. M. Miguez, and J. L. Soengas (2007)
Am J Physiol Regulatory Integrative Comp Physiol 293, R1410-R1420
   Abstract »    Full Text »    PDF »
Brain Glucose Sensing, Counterregulation, and Energy Homeostasis.
N. Marty, M. Dallaporta, and B. Thorens (2007)
Physiology 22, 241-251
   Abstract »    Full Text »    PDF »
Orchestration of Glucose Homeostasis: From a Small Acorn to the California Oak.
R. N. Bergman (2007)
Diabetes 56, 1489-1501
   Full Text »    PDF »
Glucose sensing by hypothalamic neurones and pancreatic islet cells: AMPle evidence for common mechanisms?.
P. D. Mountjoy and G. A. Rutter (2007)
Exp Physiol 92, 311-319
   Abstract »    Full Text »    PDF »
Role of malonyl-CoA in heart disease and the hypothalamic control of obesity.
C. D.L. Folmes and G. D. Lopaschuk (2007)
Cardiovasc Res 73, 278-287
   Abstract »    Full Text »    PDF »
Transforming growth factor-beta in the brain regulates fat metabolism during endurance exercise.
T. Ishikawa, W. Mizunoya, T. Shibakusa, K. Inoue, and T. Fushiki (2006)
Am J Physiol Endocrinol Metab 291, E1151-E1159
   Abstract »    Full Text »    PDF »
Long-range negative correlation of glucose dynamics in humans and its breakdown in diabetes mellitus.
H. Ogata, K. Tokuyama, S. Nagasaka, A. Ando, I. Kusaka, N. Sato, A. Goto, S. Ishibashi, K. Kiyono, Z. R. Struzik, et al. (2006)
Am J Physiol Regulatory Integrative Comp Physiol 291, R1638-R1643
   Abstract »    Full Text »    PDF »
The Brain-Gut-Islet Connection.
S. C. Woods, S. C. Benoit, and D. J. Clegg (2006)
Diabetes 55, S114-S121
   Abstract »    Full Text »    PDF »
Pancreatic signals controlling food intake; insulin, glucagon and amylin.
S. C Woods, T. A Lutz, N. Geary, and W. Langhans (2006)
Phil Trans R Soc B 361, 1219-1235
   Abstract »    Full Text »    PDF »
Papers of Note.
(2005)
Sci. Aging Knowl. Environ. 2005, nw30
   Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882