Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5737): 1056-1059

Copyright © 2005 by the American Association for the Advancement of Science

Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis

Philip A. Wigge,1,4*{dagger}{ddagger} Min Chul Kim,1* Katja E. Jaeger,1{dagger} Wolfgang Busch,2 Markus Schmid,3 Jan U. Lohmann,2 Detlef Weigel1,4{ddagger}

Abstract: Flowering of Arabidopsis is regulated by several environmental and endogenous signals. An important integrator of these inputs is the FLOWERING LOCUS T (FT) gene, which encodes a small, possibly mobile protein. A primary response to floral induction is the activation of FT RNA expression in leaves. Because flowers form at a distant site, the shoot apex, these data suggest that FT primarily controls the timing of flowering. Integration of temporal and spatial information is mediated in part by the bZIP transcription factor FD, which is already expressed at the shoot apex before floral induction. A complex of FT and FD proteins in turn can activate floral identity genes such as APETALA1 (AP1).

1 Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
2 Arbeitsgruppe Lohmann, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
3 Arbeitsgruppe Schmid, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
4 Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA 92037, USA.

* These authors contributed equally to this work.

{dagger} Present address: John Innes Centre, Cell and Developmental Biology Department, Norwich NR4 7UH, UK.

{ddagger} To whom correspondence should be addressed. E-mail: philip.wigge{at}bbsrc.ac.uk (P.W.); weigel{at}weigelworld.org (D.W.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The embryonic shoot: a lifeline through winter.
C. van der Schoot, L. K. Paul, and P. L. H. Rinne (2014)
J. Exp. Bot. 65, 1699-1712
   Abstract »    Full Text »    PDF »
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Arguments in the evo-devo debate: say it with flowers!.
S. D. Pina, E. Souer, and R. Koes (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses.
A.-R. Corrales, S. G. Nebauer, L. Carrillo, P. Fernandez-Nohales, J. Marques, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa, R.-V. Molina, et al. (2014)
J. Exp. Bot. 65, 995-1012
   Abstract »    Full Text »    PDF »
The Arabidopsis Floral Repressor BFT Delays Flowering by Competing with FT for FD Binding under High Salinity.
J. Y. Ryu, H.-J. Lee, P. J. Seo, J.-H. Jung, J. H. Ahn, and C.-M. Park (2014)
Mol Plant 7, 377-387
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
Flowering Time in Watermelon Is Associated with a Major Quantitative Trait Locus on Chromosome 3.
C. E. McGregor, V. Waters, T. Vashisth, and H. Abdel-Haleem (2014)
J. Amer. Soc. Hort. Sci. 139, 48-53
   Abstract »    Full Text »    PDF »
Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana.
M. Y. Xu, L. Zhang, W. W. Li, X. L. Hu, M.-B. Wang, Y. L. Fan, C. Y. Zhang, and L. Wang (2014)
J. Exp. Bot. 65, 89-101
   Abstract »    Full Text »    PDF »
The regulation of seasonal flowering in the Rosaceae.
T. Kurokura, N. Mimida, N. H. Battey, and T. Hytonen (2013)
J. Exp. Bot. 64, 4131-4141
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1.
S. Pearce, L. S. Vanzetti, and J. Dubcovsky (2013)
Plant Physiology 163, 1433-1445
   Abstract »    Full Text »    PDF »
The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums.
Y. Higuchi, T. Narumi, A. Oda, Y. Nakano, K. Sumitomo, S. Fukai, and T. Hisamatsu (2013)
PNAS 110, 17137-17142
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce.
A. Karlgren, N. Gyllenstrand, D. Clapham, and U. Lagercrantz (2013)
Plant Physiology 163, 792-803
   Abstract »    Full Text »    PDF »
The Fragaria vesca Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth.
K. Mouhu, T. Kurokura, E. A. Koskela, V. A. Albert, P. Elomaa, and T. Hytonen (2013)
PLANT CELL 25, 3296-3310
   Abstract »    Full Text »    PDF »
Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition.
T. Noy-Porat, D. Cohen, D. Mathew, A. Eshel, R. Kamenetsky, and M. A. Flaishman (2013)
J. Exp. Bot. 64, 3273-3284
   Abstract »    Full Text »    PDF »
Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
N. Seedat, A. Dinsdale, E. K. Ong, and A. R. Gendall (2013)
J. Exp. Bot. 64, 2767-2778
   Abstract »    Full Text »    PDF »
TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis.
E. Ando, M. Ohnishi, Y. Wang, T. Matsushita, A. Watanabe, Y. Hayashi, M. Fujii, J. F. Ma, S.-i. Inoue, and T. Kinoshita (2013)
Plant Physiology 162, 1529-1538
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Changes in CsFT Transcript Abundance at the Onset of Low-temperature Floral Induction in Sweet Orange.
E. J. Chica and L. G. Albrigo (2013)
J. Amer. Soc. Hort. Sci. 138, 184-189
   Abstract »    Full Text »    PDF »
The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice.
H. Itoh and T. Izawa (2013)
Mol Plant 6, 635-649
   Abstract »    Full Text »    PDF »
Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation.
W. Kim, T. I. Park, S. J. Yoo, A. R. Jun, and J. H. Ahn (2013)
J. Exp. Bot. 64, 1715-1729
   Abstract »    Full Text »    PDF »
Overexpression of DOSOC1, an Ortholog of Arabidopsis SOC1, Promotes Flowering in the Orchid Dendrobium Chao Parya Smile.
L. Ding, Y. Wang, and H. Yu (2013)
Plant Cell Physiol. 54, 595-608
   Abstract »    Full Text »    PDF »
BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis.
M. Niwa, Y. Daimon, K.-i. Kurotani, A. Higo, J. L. Pruneda-Paz, G. Breton, N. Mitsuda, S. A. Kay, M. Ohme-Takagi, M. Endo, et al. (2013)
PLANT CELL 25, 1228-1242
   Abstract »    Full Text »    PDF »
Expression of Flower Promoting Genes in Sweet Orange during Floral Inductive Water Deficits.
E. J. Chica and L. G. Albrigo (2013)
J. Amer. Soc. Hort. Sci. 138, 88-94
   Abstract »    Full Text »    PDF »
Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in Arabidopsis.
K. E. Jaeger, N. Pullen, S. Lamzin, R. J. Morris, and P. A. Wigge (2013)
PLANT CELL 25, 820-833
   Abstract »    Full Text »    PDF »
The Florigen Genes FT and TSF Modulate Lateral Shoot Outgrowth in Arabidopsis thaliana.
K. Hiraoka, A. Yamaguchi, M. Abe, and T. Araki (2013)
Plant Cell Physiol. 54, 352-368
   Abstract »    Full Text »    PDF »
Functional Diversification of FD Transcription Factors in Rice, Components of Florigen Activation Complexes.
H. Tsuji, H. Nakamura, K.-i. Taoka, and K. Shimamoto (2013)
Plant Cell Physiol. 54, 385-397
   Abstract »    Full Text »    PDF »
Plant Meristems and Organogenesis: The New Era of Plant Developmental Research.
Y. Machida, H. Fukaki, and T. Araki (2013)
Plant Cell Physiol. 54, 295-301
   Full Text »    PDF »
Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana.
V. Wahl, J. Ponnu, A. Schlereth, S. Arrivault, T. Langenecker, A. Franke, R. Feil, J. E. Lunn, M. Stitt, and M. Schmid (2013)
Science 339, 704-707
   Abstract »    Full Text »    PDF »
Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.
Y. Nakano, Y. Higuchi, K. Sumitomo, and T. Hisamatsu (2013)
J. Exp. Bot. 64, 909-920
   Abstract »    Full Text »    PDF »
FT-Like NFT1 Gene May Play a Role in Flower Transition Induced by Heat Accumulation in Narcissus tazetta var. chinensis.
X.-F. Li, L.-Y. Jia, J. Xu, X.-J. Deng, Y. Wang, W. Zhang, X.-P. Zhang, Q. Fang, D.-M. Zhang, Y. Sun, et al. (2013)
Plant Cell Physiol. 54, 270-281
   Abstract »    Full Text »    PDF »
The WD40-Repeat Proteins NFC101 and NFC102 Regulate Different Aspects of Maize Development through Chromatin Modification.
I. Mascheretti, R. Battaglia, D. Mainieri, A. Altana, M. Lauria, and V. Rossi (2013)
PLANT CELL 25, 404-420
   Abstract »    Full Text »    PDF »
Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor.
D. Uddenberg, J. Reimegard, D. Clapham, C. Almqvist, S. von Arnold, O. Emanuelsson, and J. F. Sundstrom (2013)
Plant Physiology 161, 813-823
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
The Cotyledons Produce Sufficient FT Protein to Induce Flowering: Evidence from Cotyledon Micrografting in Arabidopsis.
S. J. Yoo, S. M. Hong, H. S. Jung, and J. H. Ahn (2013)
Plant Cell Physiol. 54, 119-128
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress.
J.-H. Jung, P. J. Seo, and C.-M. Park (2012)
J. Biol. Chem. 287, 43277-43287
   Abstract »    Full Text »    PDF »
Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin.
N. Munoz-Fambuena, C. Mesejo, M. C. Gonzalez-Mas, E. Primo-Millo, M. Agusti, and D. J. Iglesias (2012)
Ann. Bot. 110, 1109-1118
   Abstract »    Full Text »    PDF »
Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue.
M. Randoux, J. Jeauffre, T. Thouroude, F. Vasseur, L. Hamama, M. Juchaux, S. Sakr, and F. Foucher (2012)
J. Exp. Bot. 63, 6543-6554
   Abstract »    Full Text »    PDF »
Spatial control of flowering by DELLA proteins in Arabidopsis thaliana.
V. C. Galvao, D. Horrer, F. Kuttner, and M. Schmid (2012)
Development 139, 4072-4082
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
Proteasome-Mediated Turnover of Arabidopsis MED25 Is Coupled to the Activation of FLOWERING LOCUS T Transcription.
S. Inigo, A. N. Giraldez, J. Chory, and P. D. Cerdan (2012)
Plant Physiology 160, 1662-1673
   Abstract »    Full Text »    PDF »
Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription Factors.
S. Yu, V. C. Galvao, Y.-C. Zhang, D. Horrer, T.-Q. Zhang, Y.-H. Hao, Y.-Q. Feng, S. Wang, M. Schmid, and J.-W. Wang (2012)
PLANT CELL 24, 3320-3332
   Abstract »    Full Text »    PDF »
Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods.
A. Lepisto and E. Rintamaki (2012)
Mol Plant 5, 799-816
   Abstract »    Full Text »    PDF »
Vernalization-mediated chromatin changes.
B. R. Zografos and S. Sung (2012)
J. Exp. Bot. 63, 4343-4348
   Abstract »    Full Text »    PDF »
Mutation in TERMINAL FLOWER1 Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry Fragaria vesca.
E. A. Koskela, K. Mouhu, M. C. Albani, T. Kurokura, M. Rantanen, D. J. Sargent, N. H. Battey, G. Coupland, P. Elomaa, and T. Hytonen (2012)
Plant Physiology 159, 1043-1054
   Abstract »    Full Text »    PDF »
Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
A. Porri, S. Torti, M. Romera-Branchat, and G. Coupland (2012)
Development 139, 2198-2209
   Abstract »    Full Text »    PDF »
LOV Domain-Containing F-Box Proteins: Light-Dependent Protein Degradation Modules in Arabidopsis.
S. Ito, Y. H. Song, and T. Imaizumi (2012)
Mol Plant 5, 573-582
   Abstract »    Full Text »    PDF »
Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of Three AP1/FUL-Like MADS Box Genes and PAP2, a SEPALLATA MADS Box Gene.
K. Kobayashi, N. Yasuno, Y. Sato, M. Yoda, R. Yamazaki, M. Kimizu, H. Yoshida, Y. Nagamura, and J. Kyozuka (2012)
PLANT CELL 24, 1848-1859
   Abstract »    Full Text »    PDF »
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis.
S. Ito, Y. H. Song, A. R. Josephson-Day, R. J. Miller, G. Breton, R. G. Olmstead, and T. Imaizumi (2012)
PNAS 109, 3582-3587
   Abstract »    Full Text »    PDF »
Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics.
L. Yant (2012)
Am. J. Botany 99, 277-290
   Abstract »    Full Text »    PDF »
CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
A. Oda, T. Narumi, T. Li, T. Kando, Y. Higuchi, K. Sumitomo, S. Fukai, and T. Hisamatsu (2012)
J. Exp. Bot. 63, 1461-1477
   Abstract »    Full Text »    PDF »
Analysis of the Arabidopsis Shoot Meristem Transcriptome during Floral Transition Identifies Distinct Regulatory Patterns and a Leucine-Rich Repeat Protein That Promotes Flowering.
S. Torti, F. Fornara, C. Vincent, F. Andres, K. Nordstrom, U. Gobel, D. Knoll, H. Schoof, and G. Coupland (2012)
PLANT CELL 24, 444-462
   Abstract »    Full Text »    PDF »
CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis.
Y. Imura, Y. Kobayashi, S. Yamamoto, M. Furutani, M. Tasaka, M. Abe, and T. Araki (2012)
Plant Cell Physiol. 53, 287-303
   Abstract »    Full Text »    PDF »
Developmental Plasticity in Plants.
M. de Jong and O. Leyser (2012)
Cold Spring Harb Symp Quant Biol 77, 63-73
   Abstract »    Full Text »    PDF »
Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
S. Lal, L. B. Pacis, and H. M. S. Smith (2011)
Mol Plant 4, 1123-1132
   Abstract »    Full Text »    PDF »
June bloom in Maratea.
F. Parcy and J. U. Lohmann (2011)
Development 138, 4335-4340
   Abstract »    Full Text »    PDF »
ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize.
C. M. Lazakis, V. Coneva, and J. Colasanti (2011)
J. Exp. Bot. 62, 4833-4842
   Abstract »    Full Text »    PDF »
Stress tolerance to stress escape in plants: role of the OXS2 zinc-finger transcription factor family.
R. Blanvillain, S. Wei, P. Wei, J. H. Kim, and D. W. Ow (2011)
EMBO J. 30, 3812-3822
   Abstract »    Full Text »    PDF »
Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression.
S. Hanano and K. Goto (2011)
PLANT CELL 23, 3172-3184
   Abstract »    Full Text »    PDF »
LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
J. J. Pastore, A. Limpuangthip, N. Yamaguchi, M.-F. Wu, Y. Sang, S.-K. Han, L. Malaspina, N. Chavdaroff, A. Yamaguchi, and D. Wagner (2011)
Development 138, 3189-3198
   Abstract »    Full Text »    PDF »
Long-distance regulation of flowering time.
C. Turnbull (2011)
J. Exp. Bot. 62, 4399-4413
   Abstract »    Full Text »    PDF »
Reproductive competence from an annual and a perennial perspective.
S. Bergonzi and M. C. Albani (2011)
J. Exp. Bot. 62, 4415-4422
   Abstract »    Full Text »    PDF »
The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time.
R. E. Laurie, P. Diwadkar, M. Jaudal, L. Zhang, V. Hecht, J. Wen, M. Tadege, K. S. Mysore, J. Putterill, J. L. Weller, et al. (2011)
Plant Physiology 156, 2207-2224
   Abstract »    Full Text »    PDF »
WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability.
E. Seo, J. Yu, K. H. Ryu, M. M. Lee, and I. Lee (2011)
Plant Physiology 156, 1867-1877
   Abstract »    Full Text »    PDF »
Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis.
G.-F. Wang, S. Seabolt, S. Hamdoun, G. Ng, J. Park, and H. Lu (2011)
Plant Physiology 156, 1508-1519
   Abstract »    Full Text »    PDF »
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
N. Mimida, S.-I. Kidou, H. Iwanami, S. Moriya, K. Abe, C. Voogd, E. Varkonyi-Gasic, and N. Kotoda (2011)
Tree Physiol
   Abstract »    Full Text »    PDF »
Aa TFL1 Confers an Age-Dependent Response to Vernalization in Perennial Arabis alpina.
R. Wang, M. C. Albani, C. Vincent, S. Bergonzi, M. Luan, Y. Bai, C. Kiefer, R. Castillo, and G. Coupland (2011)
PLANT CELL 23, 1307-1321
   Abstract »    Full Text »    PDF »
Reduce, reuse, and recycle: Developmental evolution of trait diversification.
J. C. Preston, L. C. Hileman, and P. Cubas (2011)
Am. J. Botany 98, 397-403
   Abstract »    Full Text »    PDF »
The FT-Like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.
X. Meng, M. G. Muszynski, and O. N. Danilevskaya (2011)
PLANT CELL 23, 942-960
   Abstract »    Full Text »    PDF »
Allelic Variation in the Perennial Ryegrass FLOWERING LOCUS T Gene Is Associated with Changes in Flowering Time across a Range of Populations.
L. Skot, R. Sanderson, A. Thomas, K. Skot, D. Thorogood, G. Latypova, T. Asp, and I. Armstead (2011)
Plant Physiology 155, 1013-1022
   Abstract »    Full Text »    PDF »
Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
H. M. S. Smith, N. Ung, S. Lal, and J. Courtier (2011)
J. Exp. Bot. 62, 583-593
   Abstract »    Full Text »    PDF »
EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.
W. Wang, D. Yang, and K. A. Feldmann (2011)
J. Exp. Bot. 62, 1077-1088
   Abstract »    Full Text »    PDF »
The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod.
V. Hecht, R. E. Laurie, J. K. Vander Schoor, S. Ridge, C. L. Knowles, L. C. Liew, F. C. Sussmilch, I. C. Murfet, R. C. Macknight, and J. L. Weller (2011)
PLANT CELL 23, 147-161
   Abstract »    Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
Two Coordinately Regulated Homologs of FLOWERING LOCUS T Are Involved in the Control of Photoperiodic Flowering in Soybean.
F. Kong, B. Liu, Z. Xia, S. Sato, B. M. Kim, S. Watanabe, T. Yamada, S. Tabata, A. Kanazawa, K. Harada, et al. (2010)
Plant Physiology 154, 1220-1231
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882