Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5741): 1694-1696

Copyright © 2005 by the American Association for the Advancement of Science

The mRNA of the Arabidopsis Gene FT Moves from Leaf to Shoot Apex and Induces Flowering

Tao Huang,1 Henrik Böhlenius,1 Sven Eriksson,1 François Parcy,2 Ove Nilsson1*

Abstract: Day length controls flowering time in many plants. The day-length signal is perceived in the leaf, but how this signal is transduced to the shoot apex, where floral initiation occurs, is not known. In Arabidopsis, the day-length response depends on the induction of the FLOWERING LOCUS T (FT) gene. We show here that local induction of FT in a single Arabidopsis leaf is sufficient to trigger flowering. The FT messenger RNA is transported to the shoot apex, where downstream genes are activated. These data suggest that the FT mRNA is an important component of the elusive "florigen" signal that moves from leaf to shoot apex.

1 Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90183, Umeå, Sweden.
2 Laboratoire de Physiologie Cellulaire Végétale, Département Réponse et Dynamique Cellulaires (DRDC/PCV), Unité Mixte de Recherche 5168 [(UMR) Joint Research Unit] Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier, 17 rue des Martyrs, bâtiment C2–38054, Grenoble Cedex 9, France.

Note added in proof: It has now been shown that FT can act in the shoot apex by controlling the activity of the shoot apex–expressed transcription factor FD (22, 23).

* To whom correspondence should be addressed. E-mail: Ove.Nilsson{at}genfys.slu.se


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants.
H.-Y. Yeang (2013)
J. Exp. Bot. 64, 2643-2652
   Abstract »    Full Text »    PDF »
HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress.
C. A. Dezar, J. I. Giacomelli, P. A. Manavella, D. A. Re, M. Alves-Ferreira, I. T. Baldwin, G. Bonaventure, and R. L. Chan (2011)
J. Exp. Bot. 62, 1061-1076
   Abstract »    Full Text »    PDF »
The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments.
S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, et al. (2009)
Clin. Chem. 55, 611-622
   Abstract »    Full Text »    PDF »
Nano Scale Proteomics Revealed the Presence of Regulatory Proteins Including Three FT-Like proteins in Phloem and Xylem Saps from Rice.
T. Aki, M. Shigyo, R. Nakano, T. Yoneyama, and S. Yanagisawa (2008)
Plant Cell Physiol. 49, 767-790
   Abstract »    Full Text »    PDF »
Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation.
R. Tominaga, M. Iwata, R. Sano, K. Inoue, K. Okada, and T. Wada (2008)
Development 135, 1335-1345
   Abstract »    Full Text »    PDF »
A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize.
O. N. Danilevskaya, X. Meng, Z. Hou, E. V. Ananiev, and C. R. Simmons (2008)
Plant Physiology 146, 250-264
   Abstract »    Full Text »    PDF »
OsMADS51 Is a Short-Day Flowering Promoter That Functions Upstream of Ehd1, OsMADS14, and Hd3a.
S. L. Kim, S. Lee, H. J. Kim, H. G. Nam, and G. An (2007)
Plant Physiology 145, 1484-1494
   Abstract »    Full Text »    PDF »
Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana.
Y. Niwa, S. Ito, N. Nakamichi, T. Mizoguchi, K. Niinuma, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 925-937
   Abstract »    Full Text »    PDF »
Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot.
L. Gallego-Giraldo, J. L. Garcia-Martinez, T. Moritz, and I. Lopez-Diaz (2007)
Plant Cell Physiol. 48, 897-898
   Full Text »    PDF »
A LEAFY-like gene in the long-day plant, Silene coeli-rosa is dramatically up-regulated in evoked shoot apical meristems but does not complement the Arabidopsis lfy mutant.
G. V. Allnutt, H. J. Rogers, D. Francis, and R. J. Herbert (2007)
J. Exp. Bot. 58, 2249-2259
   Abstract »    Full Text »    PDF »
Translocation in Legumes: Assimilates, Nutrients, and Signaling Molecules.
C. A. Atkins and P. M. C. Smith (2007)
Plant Physiology 144, 550-561
   Full Text »    PDF »
Pea LATE BLOOMER1 Is a GIGANTEA Ortholog with Roles in Photoperiodic Flowering, Deetiolation, and Transcriptional Regulation of Circadian Clock Gene Homologs.
V. Hecht, C. L. Knowles, J. K. Vander Schoor, L. C. Liew, S. E. Jones, M. J.M. Lambert, and J. L. Weller (2007)
Plant Physiology 144, 648-661
   Abstract »    Full Text »    PDF »
Specification of Arabidopsis floral meristem identity by repression of flowering time genes.
C. Liu, J. Zhou, K. Bracha-Drori, S. Yalovsky, T. Ito, and H. Yu (2007)
Development 134, 1901-1910
   Abstract »    Full Text »    PDF »
Phloem-Borne FT Signals Flowering in Cucurbits.
N. A. Eckardt (2007)
PLANT CELL 19, 1435-1438
   Full Text »    PDF »
The FLOWERING LOCUS T-Like Gene Family in Barley (Hordeum vulgare).
S. Faure, J. Higgins, A. Turner, and D. A. Laurie (2007)
Genetics 176, 599-609
   Abstract »    Full Text »    PDF »
FLOWERING LOCUS T Protein May Act as the Long-Distance Florigenic Signal in the Cucurbits.
M.-K. Lin, H. Belanger, Y.-J. Lee, E. Varkonyi-Gasic, K.-I. Taoka, E. Miura, B. Xoconostle-Cazares, K. Gendler, R. A. Jorgensen, B. Phinney, et al. (2007)
PLANT CELL 19, 1488-1506
   Abstract »    Full Text »    PDF »
A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers.
N. Gyllenstrand, D. Clapham, T. Kallman, and U. Lagercrantz (2007)
Plant Physiology 144, 248-257
   Abstract »    Full Text »    PDF »
Retraction.
H. Bohlenius, S. Eriksson, F. Parcy, and O. Nilsson (2007)
Science 316, 367b
   Full Text »    PDF »
Day Length Affects the Dynamics of Leaf Expansion and Cellular Development in Arabidopsis thaliana Partially through Floral Transition Timing.
S. J. Cookson, K. Chenu, and C. Granier (2007)
Ann. Bot. 99, 703-711
   Abstract »    Full Text »    PDF »
Flowering in Tobacco Needs Gibberellins but is not Promoted by the Levels of Active GA1 and GA4 in the Apical Shoot.
L. Gallego-Giraldo, J. L. Garcia-Martinez, T. Moritz, and I. Lopez-Diaz (2007)
Plant Cell Physiol. 48, 615-625
   Abstract »    Full Text »    PDF »
Flowering and determinacy in Arabidopsis.
R. Sablowski (2007)
J. Exp. Bot. 58, 899-907
   Abstract »    Full Text »    PDF »
Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex.
D. H. Chitwood, M. Guo, F. T. S. Nogueira, and M. C. P. Timmermans (2007)
Development 134, 813-823
   Abstract »    Full Text »    PDF »
TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture.
L. Conti and D. Bradley (2007)
PLANT CELL 19, 767-778
   Abstract »    Full Text »    PDF »
Role of SVP in the control of flowering time by ambient temperature in Arabidopsis.
J. H. Lee, S. J. Yoo, S. H. Park, I. Hwang, J. S. Lee, and J. H. Ahn (2007)
Genes & Dev. 21, 397-402
   Abstract »    Full Text »    PDF »
Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition.
A. Y. M. Wong and J. Colasanti (2007)
J. Exp. Bot. 58, 403-414
   Abstract »    Full Text »    PDF »
Molecular Basis of Late-Flowering Phenotype Caused by Dominant Epi-Alleles of the FWA Locus in Arabidopsis.
Y. Ikeda, Y. Kobayashi, A. Yamaguchi, M. Abe, and T. Araki (2007)
Plant Cell Physiol. 48, 205-220
   Abstract »    Full Text »    PDF »
The wheat and barley vernalization gene VRN3 is an orthologue of FT.
L. Yan, D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky (2006)
PNAS 103, 19581-19586
   Abstract »    Full Text »    PDF »
Dynamics of a Mobile RNA of Potato Involved in a Long-Distance Signaling Pathway.
A. K. Banerjee, M. Chatterjee, Y. Yu, S.-G. Suh, W. A. Miller, and D. J. Hannapel (2006)
PLANT CELL 18, 3443-3457
   Abstract »    Full Text »    PDF »
delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize.
M. G. Muszynski, T. Dam, B. Li, D. M. Shirbroun, Z. Hou, E. Bruggemann, R. Archibald, E. V. Ananiev, and O. N. Danilevskaya (2006)
Plant Physiology 142, 1523-1536
   Abstract »    Full Text »    PDF »
The quest for florigen: a review of recent progress.
L. Corbesier and G. Coupland (2006)
J. Exp. Bot. 57, 3395-3403
   Abstract »    Full Text »    PDF »
Light signals and flowering.
B. Thomas (2006)
J. Exp. Bot. 57, 3387-3393
   Abstract »    Full Text »    PDF »
Reproductive meristem fates in Gerbera.
T. H. Teeri, A. Uimari, M. Kotilainen, R. Laitinen, H. Help, P. Elomaa, and V. A. Albert (2006)
J. Exp. Bot. 57, 3445-3455
   Abstract »    Full Text »    PDF »
Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.
E. Lifschitz and Y. Eshed (2006)
J. Exp. Bot. 57, 3405-3414
   Abstract »    Full Text »    PDF »
The control of flowering in time and space.
K. E. Jaeger, A. Graf, and P. A. Wigge (2006)
J. Exp. Bot. 57, 3415-3418
   Abstract »    Full Text »    PDF »
A phloem-enriched cDNA library from Ricinus: insights into phloem function.
C Doering-Saad, H. Newbury, C. Couldridge, J. Bale, and J Pritchard (2006)
J. Exp. Bot. 57, 3183-3193
   Abstract »    Full Text »    PDF »
GA4 Is the Active Gibberellin in the Regulation of LEAFY Transcription and Arabidopsis Floral Initiation.
S. Eriksson, H. Bohlenius, T. Moritz, and O. Nilsson (2006)
PLANT CELL 18, 2172-2181
   Abstract »    Full Text »    PDF »
A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
J. Li, X. Li, H. Su, H. Chen, and D. W. Galbraith (2006)
Bioinformatics 22, 2037-2043
   Abstract »    Full Text »    PDF »
Florigen Coming of Age after 70 Years.
J. A.D. Zeevaart (2006)
PLANT CELL 18, 1783-1789
   Full Text »    PDF »
Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering.
C.-Y. Hsu, Y. Liu, D. S. Luthe, and C. Yuceer (2006)
PLANT CELL 18, 1846-1861
   Abstract »    Full Text »    PDF »
Regulation of Flowering in the Long-Day Grass Lolium temulentum by Gibberellins and the FLOWERING LOCUS T Gene.
R. W. King, T. Moritz, L. T. Evans, J. Martin, C. H. Andersen, C. Blundell, I. Kardailsky, and P. M. Chandler (2006)
Plant Physiology 141, 498-507
   Abstract »    Full Text »    PDF »
CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees.
H. Bohlenius, T. Huang, L. Charbonnel-Campaa, A. M. Brunner, S. Jansson, S. H. Strauss, and O. Nilsson (2006)
Science 312, 1040-1043
   Abstract »    Full Text »    PDF »
The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.
E. Lifschitz, T. Eviatar, A. Rozman, A. Shalit, A. Goldshmidt, Z. Amsellem, J. P. Alvarez, and Y. Eshed (2006)
PNAS 103, 6398-6403
   Abstract »    Full Text »    PDF »
The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis..
I. Searle, Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R. A. Amasino, and G. Coupland (2006)
Genes & Dev. 20, 898-912
   Abstract »    Full Text »    PDF »
2005: Signaling Breakthroughs of the Year.
E. M. Adler, N. R. Gough, and L. B. Ray (2006)
Sci. STKE 2006, eg1
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882