Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5741): 1732-1735

Copyright © 2005 by the American Association for the Advancement of Science

PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53

Jerry E. Chipuk,1* Lisa Bouchier-Hayes,1 Tomomi Kuwana,1,2 Donald D. Newmeyer,1 Douglas R. Green1*{dagger}

Abstract: The Trp53 tumor suppressor gene product (p53) functions in the nucleus to regulate proapoptotic genes, whereas cytoplasmic p53 directly activates proapoptotic Bcl-2 proteins to permeabilize mitochondria and initiate apoptosis. Here, we demonstrate that a tripartite nexus between Bcl-xL, cytoplasmic p53, and PUMA coordinates these distinct p53 functions. After genotoxic stress, Bcl-xL sequestered cytoplasmic p53. Nuclear p53 caused expression of PUMA, which then displaced p53 from Bcl-xL, allowing p53 to induce mitochondrial permeabilization. Mutant Bcl-xL that bound p53, but not PUMA, rendered cells resistant to p53-induced apoptosis irrespective of PUMA expression. Thus, PUMA couples the nuclear and cytoplasmic proapoptotic functions of p53.

1 Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
2 University of Iowa, Carver College of Medicine, Department of Pathology, Iowa City, IA 52242, USA.

* Present address: Department of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA.

{dagger} To whom correspondence should be addressed. E-mail: dgreen5240{at}aol.com


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Tonic Activation of Bax Primes Neural Progenitors for Rapid Apoptosis through a Mechanism Preserved in Medulloblastoma.
A. J. Crowther, V. Gama, A. Bevilacqua, S. X. Chang, H. Yuan, M. Deshmukh, and T. R. Gershon (2013)
J. Neurosci. 33, 18098-18108
   Abstract »    Full Text »    PDF »
Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis.
A. I. Nieminen, V. M. Eskelinen, H. M. Haikala, T. A. Tervonen, Y. Yan, J. I. Partanen, and J. Klefstrom (2013)
PNAS 110, E1839-E1848
   Abstract »    Full Text »    PDF »
RB goes mitochondrial.
L. D. Attardi and J. Sage (2013)
Genes & Dev. 27, 975-979
   Abstract »    Full Text »    PDF »
Another fork in the road--life or death decisions by the tumour suppressor p53.
L. A. Carvajal and J. J. Manfredi (2013)
EMBO Rep. 14, 414-421
   Abstract »    Full Text »    PDF »
The retinoblastoma protein induces apoptosis directly at the mitochondria.
K. I. Hilgendorf, E. S. Leshchiner, S. Nedelcu, M. A. Maynard, E. Calo, A. Ianari, L. D. Walensky, and J. A. Lees (2013)
Genes & Dev. 27, 1003-1015
   Abstract »    Full Text »    PDF »
Crizotinib Induces PUMA-Dependent Apoptosis in Colon Cancer Cells.
X. Zheng, K. He, L. Zhang, and J. Yu (2013)
Mol. Cancer Ther. 12, 777-786
   Abstract »    Full Text »    PDF »
p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.
R. N. Matin, A. Chikh, S. Law Pak Chong, D. Mesher, M. Graf, P. Sanza', V. Senatore, M. Scatolini, F. Moretti, I. M. Leigh, et al. (2013)
J. Exp. Med. 210, 581-603
   Abstract »    Full Text »    PDF »
Dual-site Interactions of p53 Protein Transactivation Domain with Anti-apoptotic Bcl-2 Family Proteins Reveal a Highly Convergent Mechanism of Divergent p53 Pathways.
J.-H. Ha, J.-S. Shin, M.-K. Yoon, M.-S. Lee, F. He, K.-H. Bae, H. S. Yoon, C.-K. Lee, S. G. Park, Y. Muto, et al. (2013)
J. Biol. Chem. 288, 7387-7398
   Abstract »    Full Text »    PDF »
The TP53 signaling network in mammals and worms.
A. K. Jolliffe and W. B. Derry (2013)
Briefings in Functional Genomics 12, 129-141
   Abstract »    Full Text »    PDF »
ASPP1/2 Regulate p53-Dependent Death of Retinal Ganglion Cells through PUMA and Fas/CD95 Activation In Vivo.
A. M. Wilson, B. Morquette, M. Abdouh, N. Unsain, P. A. Barker, E. Feinstein, G. Bernier, and A. Di Polo (2013)
J. Neurosci. 33, 2205-2216
   Abstract »    Full Text »    PDF »
Programmed Cell Death in Parkinson's Disease.
K. Venderova and D. S. Park (2012)
Cold Spring Harb Perspect Med 2, a009365
   Abstract »    Full Text »    PDF »
The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO.
F.-S. Chou, A. Griesinger, M. Wunderlich, S. Lin, K. A. Link, M. Shrestha, S. Goyama, B. Mizukawa, S. Shen, G. Marcucci, et al. (2012)
Blood 120, 709-719
   Abstract »    Full Text »    PDF »
p53/HMGB1 Complexes Regulate Autophagy and Apoptosis.
K. M. Livesey, R. Kang, P. Vernon, W. Buchser, P. Loughran, S. C. Watkins, L. Zhang, J. J. Manfredi, H. J. Zeh III, L. Li, et al. (2012)
Cancer Res. 72, 1996-2005
   Abstract »    Full Text »    PDF »
The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy.
L. Shen, X. Sun, Z. Fu, G. Yang, J. Li, and L. Yao (2012)
Clin. Cancer Res. 18, 1561-1567
   Abstract »    Full Text »    PDF »
A DR4:tBID axis drives the p53 apoptotic response by promoting oligomerization of poised BAX.
R. E. Henry, Z. Andrysik, R. Paris, M. D. Galbraith, and J. M. Espinosa (2012)
EMBO J. 31, 1266-1278
   Abstract »    Full Text »    PDF »
Resveratrol Induces p53-independent, X-linked Inhibitor of Apoptosis Protein (XIAP)-mediated Bax Protein Oligomerization on Mitochondria to Initiate Cytochrome c Release and Caspase Activation.
R. Gogada, V. Prabhu, M. Amadori, R. Scott, S. Hashmi, and D. Chandra (2011)
J. Biol. Chem. 286, 28749-28760
   Abstract »    Full Text »    PDF »
p53-Upregulated Modulator of Apoptosis (PUMA): A Novel Proapoptotic Molecule in the Failing Heart.
S. E. Altin and P. C. Schulze (2011)
Circulation 124, 7-8
   Full Text »    PDF »
The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment.
R. Elkholi, K. V. Floros, and J. E. Chipuk (2011)
Genes & Cancer 2, 523-537
   Abstract »    Full Text »    PDF »
The Role of p53 in Metabolic Regulation.
A. M. Puzio-Kuter (2011)
Genes & Cancer 2, 385-391
   Abstract »    Full Text »    PDF »
The relevance of protein-protein interactions for p53 function: the CPE contribution.
M. R. Fernandez-Fernandez and B. Sot (2011)
Protein Eng. Des. Sel. 24, 41-51
   Abstract »    Full Text »    PDF »
Glioma oncoprotein Bcl2L12 inhibits the p53 tumor suppressor.
A. H. Stegh, C. Brennan, J. A. Mahoney, K. L. Forloney, H. T. Jenq, J. P. Luciano, A. Protopopov, L. Chin, and R. A. DePinho (2010)
Genes & Dev. 24, 2194-2204
   Abstract »    Full Text »    PDF »
p53 at a glance.
C. A. Brady and L. D. Attardi (2010)
J. Cell Sci. 123, 2527-2532
   Full Text »    PDF »
The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor.
J. J. Manfredi (2010)
Genes & Dev. 24, 1580-1589
   Abstract »    Full Text »    PDF »
Regulation of Mitochondrial Apoptotic Events by p53-mediated Disruption of Complexes between Antiapoptotic Bcl-2 Members and Bim.
J. Han, L. A. Goldstein, W. Hou, B. R. Gastman, and H. Rabinowich (2010)
J. Biol. Chem. 285, 22473-22483
   Abstract »    Full Text »    PDF »
A genome-scale protein interaction profile of Drosophila p53 uncovers additional nodes of the human p53 network.
A. Lunardi, G. Di Minin, P. Provero, M. Dal Ferro, M. Carotti, G. Del Sal, and L. Collavin (2010)
PNAS 107, 6322-6327
   Abstract »    Full Text »    PDF »
Cytoplasmic p53 and Activated Bax Regulate p53-dependent, Transcription-independent Neural Precursor Cell Apoptosis.
Y. Geng, K. C. Walls, A. P. Ghosh, R. S. Akhtar, B. J. Klocke, and K. A. Roth (2010)
Journal of Histochemistry & Cytochemistry 58, 265-275
   Abstract »    Full Text »    PDF »
Pharmacological activation of the p53 pathway in haematological malignancies.
M. N Saha, J. Micallef, L. Qiu, and H. Chang (2010)
J. Clin. Pathol. 63, 204-209
   Abstract »    Full Text »    PDF »
BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain.
F. Hagn, C. Klein, O. Demmer, N. Marchenko, A. Vaseva, U. M. Moll, and H. Kessler (2010)
J. Biol. Chem. 285, 3439-3450
   Abstract »    Full Text »    PDF »
Tumor Suppressive Functions of p53.
J. T. Zilfou and S. W. Lowe (2009)
Cold Spring Harb Perspect Biol 1, a001883
   Abstract »    Full Text »    PDF »
Pentagalloylglucose induces autophagy and caspase-independent programmed deaths in human PC-3 and mouse TRAMP-C2 prostate cancer cells.
H. Hu, Y. Chai, L. Wang, J. Zhang, H. J. Lee, S.-H. Kim, and J. Lu (2009)
Mol. Cancer Ther. 8, 2833-2843
   Abstract »    Full Text »    PDF »
Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: critical role of Noxa-mediated lipid peroxidation.
O. Kutuk, E. D. Arisan, T. Tezil, M. C. Shoshan, and H. Basaga (2009)
Carcinogenesis 30, 1517-1527
   Abstract »    Full Text »    PDF »
siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury.
B. A. Molitoris, P. C. Dagher, R. M. Sandoval, S. B. Campos, H. Ashush, E. Fridman, A. Brafman, A. Faerman, S. J. Atkinson, J. D. Thompson, et al. (2009)
J. Am. Soc. Nephrol. 20, 1754-1764
   Abstract »    Full Text »    PDF »
Acetylation of the DNA Binding Domain Regulates Transcription-independent Apoptosis by p53.
S. M. Sykes, T. J. Stanek, A. Frank, M. E. Murphy, and S. B. McMahon (2009)
J. Biol. Chem. 284, 20197-20205
   Abstract »    Full Text »    PDF »
PUMA Promotes Bax Translocation by Both Directly Interacting with Bax and by Competitive Binding to Bcl-XL during UV-induced Apoptosis.
Y. Zhang, D. Xing, and L. Liu (2009)
Mol. Biol. Cell 20, 3077-3087
   Abstract »    Full Text »    PDF »
DDB2 decides cell fate following DNA damage.
T. Stoyanova, N. Roy, D. Kopanja, S. Bagchi, and P. Raychaudhuri (2009)
PNAS 106, 10690-10695
   Abstract »    Full Text »    PDF »
Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members.
T. Gallenne, F. Gautier, L. Oliver, E. Hervouet, B. Noel, J. A. Hickman, O. Geneste, P.-F. Cartron, F. M. Vallette, S. Manon, et al. (2009)
J. Cell Biol. 185, 279-290
   Abstract »    Full Text »    PDF »
Synaptic Activity-Mediated Suppression of p53 and Induction of Nuclear Calcium-Regulated Neuroprotective Genes Promote Survival through Inhibition of Mitochondrial Permeability Transition.
D. Lau and H. Bading (2009)
J. Neurosci. 29, 4420-4429
   Abstract »    Full Text »    PDF »
PERP, a p53 proapoptotic target, mediates apoptotic cell death in renal ischemia.
K. Singaravelu, K. Devalaraja-Narashimha, B. Lastovica, and B. J. Padanilam (2009)
Am J Physiol Renal Physiol 296, F847-F858
   Abstract »    Full Text »    PDF »
Prep1 Directly Regulates the Intrinsic Apoptotic Pathway by Controlling Bcl-XL Levels.
N. Micali, C. Ferrai, L. C. Fernandez-Diaz, F. Blasi, and M. P. Crippa (2009)
Mol. Cell. Biol. 29, 1143-1151
   Abstract »    Full Text »    PDF »
Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins.
J. E. Chipuk, J. C. Fisher, C. P. Dillon, R. W. Kriwacki, T. Kuwana, and D. R. Green (2008)
PNAS 105, 20327-20332
   Abstract »    Full Text »    PDF »
Regulation and Pathological Role of p53 in Cisplatin Nephrotoxicity.
M. Jiang and Z. Dong (2008)
J. Pharmacol. Exp. Ther. 327, 300-307
   Abstract »    Full Text »    PDF »
Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death.
S. C. Hand and M. A. Menze (2008)
J. Exp. Biol. 211, 1829-1840
   Abstract »    Full Text »    PDF »
Cell Stress Gives a Red Light to the Mitochondrial Cell Death Pathway.
M. E. Guicciardi and G. J. Gores (2008)
Science Signaling 1, pe9
   Abstract »    Full Text »    PDF »
Apoptotic blocks and chemotherapy resistance: strategies to identify Bcl-2 protein signatures.
O. Gul, H. Basaga, and O. Kutuk (2008)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death.
N. N. Danial (2007)
Clin. Cancer Res. 13, 7254-7263
   Abstract »    Full Text »    PDF »
Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria.
J. I-J. Leu and D. L. George (2007)
Genes & Dev. 21, 3095-3109
   Abstract »    Full Text »    PDF »
Granzyme B-induced Cell Death Involves Induction of p53 Tumor Suppressor Gene and Its Activation in Tumor Target Cells.
F. Meslin, J. Thiery, C. Richon, A. Jalil, and S. Chouaib (2007)
J. Biol. Chem. 282, 32991-32999
   Abstract »    Full Text »    PDF »
Apoptotic Actions of p53 Require Transcriptional Activation of PUMA and Do Not Involve a Direct Mitochondrial/Cytoplasmic Site of Action in Postnatal Cortical Neurons.
T. Uo, Y. Kinoshita, and R. S. Morrison (2007)
J. Neurosci. 27, 12198-12210
   Abstract »    Full Text »    PDF »
Comparative Biophysical Characterization of p53 with the Pro-apoptotic BAK and the Anti-apoptotic BCL-xL.
B. Sot, S. M. V. Freund, and A. R. Fersht (2007)
J. Biol. Chem. 282, 29193-29200
   Abstract »    Full Text »    PDF »
Bax Inhibitor-1 Regulates Endoplasmic Reticulum Stress-associated Reactive Oxygen Species and Heme Oxygenase-1 Expression.
G.-H. Lee, H.-K. Kim, S.-W. Chae, D.-S. Kim, K.-C. Ha, M. Cuddy, C. Kress, J. C. Reed, H.-R. Kim, and H.-J. Chae (2007)
J. Biol. Chem. 282, 21618-21628
   Abstract »    Full Text »    PDF »
Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex.
H. Tidow, R. Melero, E. Mylonas, S. M. V. Freund, J. G. Grossmann, J. M. Carazo, D. I. Svergun, M. Valle, and A. R. Fersht (2007)
PNAS 104, 12324-12329
   Abstract »    Full Text »    PDF »
Evidence for p53 as Guardian of the Cardiomyocyte Mitochondrial Genome Following Acute Adriamycin Treatment.
R. Nithipongvanitch, W. Ittarat, J. M. Velez, R. Zhao, D. K. St. Clair, and T. D. Oberley (2007)
Journal of Histochemistry & Cytochemistry 55, 629-639
   Abstract »    Full Text »    PDF »
Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease.
C. Perier, J. Bove, D.-C. Wu, B. Dehay, D.-K. Choi, V. Jackson-Lewis, S. Rathke-Hartlieb, P. Bouillet, A. Strasser, J. B. Schulz, et al. (2007)
PNAS 104, 8161-8166
   Abstract »    Full Text »    PDF »
TAT-RasGAP317-326 Requires p53 and PUMA to Sensitize Tumor Cells to Genotoxins.
D. Michod and C. Widmann (2007)
Mol. Cancer Res. 5, 497-507
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Kinase Inhibition Enhances Nuclear Proapoptotic Function of p53 in Acute Myelogenous Leukemia Cells.
K. Kojima, M. Konopleva, I. J. Samudio, V. Ruvolo, and M. Andreeff (2007)
Cancer Res. 67, 3210-3219
   Abstract »    Full Text »    PDF »
The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage.
P. Wang, J. Yu, and L. Zhang (2007)
PNAS 104, 4054-4059
   Abstract »    Full Text »    PDF »
A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells.
W.-X. Ding, H.-M. Ni, X. Chen, J. Yu, L. Zhang, and X.-M. Yin (2007)
Mol. Cancer Ther. 6, 1062-1069
   Abstract »    Full Text »    PDF »
Monoubiquitylation promotes mitochondrial p53 translocation.
N. D. Marchenko, S. Wolff, S. Erster, K. Becker, and U. M. Moll (2007)
EMBO J. 26, 923-934
   Abstract »    Full Text »    PDF »
Mouse Mutants Reveal that Putative Protein Interaction Sites in the p53 Proline-Rich Domain Are Dispensable for Tumor Suppression.
F. Toledo, C. J. Lee, K. A. Krummel, L.-W. Rodewald, C.-W. Liu, and G. M. Wahl (2007)
Mol. Cell. Biol. 27, 1425-1432
   Abstract »    Full Text »    PDF »
p53-Dependent p21 mRNA Elongation Is Impaired when DNA Replication Is Stalled.
M. Mattia, V. Gottifredi, K. McKinney, and C. Prives (2007)
Mol. Cell. Biol. 27, 1309-1320
   Abstract »    Full Text »    PDF »
Mitochondrial Membrane Permeabilization in Cell Death.
G. Kroemer, L. Galluzzi, and C. Brenner (2007)
Physiol Rev 87, 99-163
   Abstract »    Full Text »    PDF »
p53-based cancer therapies: is defective p53 the Achilles heel of the tumor?.
A. A. Levesque and A. Eastman (2007)
Carcinogenesis 28, 13-20
   Abstract »    Full Text »    PDF »
Aspartic protease and caspase 3/7 activation are central for macrophage apoptosis following infection with Escherichia coli.
L. Albee, B. Shi, and H. Perlman (2007)
J. Leukoc. Biol. 81, 229-237
   Abstract »    Full Text »    PDF »
Teratogen-Induced Activation of p53 in Early Postimplantation Mouse Embryos.
H. Hosako, S. A. Little, M. Barrier, and P. E. Mirkes (2007)
Toxicol. Sci. 95, 257-269
   Abstract »    Full Text »    PDF »
Outcomes of p53 activation - spoilt for choice.
K. H. Vousden (2006)
J. Cell Sci. 119, 5015-5020
   Abstract »    Full Text »    PDF »
Role of p53 Up-regulated Modulator of Apoptosis and Phosphorylated Akt in Melanoma Cell Growth, Apoptosis, and Patient Survival..
A. M. Karst, D. L. Dai, J. Q. Cheng, and G. Li (2006)
Cancer Res. 66, 9221-9226
   Abstract »    Full Text »    PDF »
Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats..
H. Endo, H. Kamada, C. Nito, T. Nishi, and P. H. Chan (2006)
J. Neurosci. 26, 7974-7983
   Abstract »    Full Text »    PDF »
Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion.
A. Toth, J. R. Jeffers, P. Nickson, J.-Y. Min, J. P. Morgan, G. P. Zambetti, and P. Erhardt (2006)
Am J Physiol Heart Circ Physiol 291, H52-H60
   Abstract »    Full Text »    PDF »
Bcl2's Flexible Loop Domain Regulates p53 Binding and Survival.
X. Deng, F. Gao, T. Flagg, J. Anderson, and W. S. May (2006)
Mol. Cell. Biol. 26, 4421-4434
   Abstract »    Full Text »    PDF »
Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a.
H. You, K. Yamamoto, and T. W. Mak (2006)
PNAS 103, 9051-9056
   Abstract »    Full Text »    PDF »
PUMA Dissociates Bax and Bcl-XL to Induce Apoptosis in Colon Cancer Cells.
L. Ming, P. Wang, A. Bank, J. Yu, and L. Zhang (2006)
J. Biol. Chem. 281, 16034-16042
   Abstract »    Full Text »    PDF »
p53 and breast cancer, an update..
M. Lacroix, R.-A. Toillon, and G. Leclercq (2006)
Endocr. Relat. Cancer 13, 293-325
   Abstract »    Full Text »    PDF »
The p53 Pathway Promotes Efficient Mitochondrial DNA Base Excision Repair in Colorectal Cancer Cells.
D. Chen, Z. Yu, Z. Zhu, and C. D. Lopez (2006)
Cancer Res. 66, 3485-3494
   Abstract »    Full Text »    PDF »
Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin.
A. Benchoua, Y. Trioulier, D. Zala, M.-C. Gaillard, N. Lefort, N. Dufour, F. Saudou, J.-M. Elalouf, E. Hirsch, P. Hantraye, et al. (2006)
Mol. Biol. Cell 17, 1652-1663
   Abstract »    Full Text »    PDF »
WT p53, but Not Tumor-derived Mutants, Bind to Bcl2 via the DNA Binding Domain and Induce Mitochondrial Permeabilization.
Y. Tomita, N. Marchenko, S. Erster, A. Nemajerova, A. Dehner, C. Klein, H. Pan, H. Kessler, P. Pancoska, and U. M. Moll (2006)
J. Biol. Chem. 281, 8600-8606
   Abstract »    Full Text »    PDF »
Levels of HdmX Expression Dictate the Sensitivity of Normal and Transformed Cells to Nutlin-3..
J. T. Patton, L. D. Mayo, A. D. Singhi, A. V. Gudkov, G. R. Stark, and M. W. Jackson (2006)
Cancer Res. 66, 3169-3176
   Abstract »    Full Text »    PDF »
Transcriptional blackjack with p21..
A. Wood and A. Shilatifard (2006)
Genes & Dev. 20, 643-647
   Full Text »    PDF »
Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program..
N. P. Gomes, G. Bjerke, B. Llorente, S. A. Szostek, B. M. Emerson, and J. M. Espinosa (2006)
Genes & Dev. 20, 601-612
   Abstract »    Full Text »    PDF »
The multidomain proapoptotic molecules Bax and Bak are directly activated by heat.
L. J. Pagliari, T. Kuwana, C. Bonzon, D. D. Newmeyer, S. Tu, H. M. Beere, and D. R. Green (2005)
PNAS 102, 17975-17980
   Abstract »    Full Text »    PDF »
APOPTOSIS: p53 and PUMA: A Deadly Duo.
K. H. Vousden (2005)
Science 309, 1685-1686
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882