Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5741): 1735-1739

Copyright © 2005 by the American Association for the Advancement of Science

Lymphocyte Sequestration Through S1P Lyase Inhibition and Disruption of S1P Gradients

Susan R. Schwab,1 João P. Pereira,1 Mehrdad Matloubian,1 Ying Xu,1 Yong Huang,2 Jason G. Cyster1*

Abstract: Lymphocyte egress from the thymus and from peripheral lymphoid organs depends on sphingosine 1-phosphate (S1P) receptor-1 and is thought to occur in response to circulatory S1P. However, the existence of an S1P gradient between lymphoid organs and blood or lymph has not been established. To further define egress requirements, we addressed why treatment with the food colorant 2-acetyl-4-tetrahydroxybutylimidazole (THI) induces lymphopenia. We found that S1P abundance in lymphoid tissues of mice is normally low but increases more than 100-fold after THI treatment and that this treatment inhibits the S1P-degrading enzyme S1P lyase. We conclude that lymphocyte egress is mediated by S1P gradients that are established by S1P lyase activity and that the lyase may represent a novel immunosuppressant drug target.

1 Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143–0414, USA.
2 Drug Studies Unit, Department of Biopharmaceutical Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143–0414, USA.

* To whom correspondence should be addressed. E-mail: cyster{at}itsa.ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dynamin 2-dependent endocytosis is required for sustained S1PR1 signaling.
T. Willinger, S. M. Ferguson, J. P. Pereira, P. De Camilli, and R. A. Flavell (2014)
J. Exp. Med. 211, 685-700
   Abstract »    Full Text »    PDF »
MyD88- and TRIF-Independent Induction of Type I Interferon Drives Naive B Cell Accumulation but Not Loss of Lymph Node Architecture in Lyme Disease.
C. J. Hastey, J. Ochoa, K. J. Olsen, S. W. Barthold, and N. Baumgarth (2014)
Infect. Immun. 82, 1548-1558
   Abstract »    Full Text »    PDF »
Integrin {alpha}9 on lymphatic endothelial cells regulates lymphocyte egress.
K. Ito, J. Morimoto, A. Kihara, Y. Matsui, D. Kurotaki, M. Kanayama, S. Simmons, M. Ishii, D. Sheppard, A. Takaoka, et al. (2014)
PNAS 111, 3080-3085
   Abstract »    Full Text »    PDF »
S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.
Y. Maeda, H. Yagi, K. Takemoto, H. Utsumi, A. Fukunari, K. Sugahara, T. Masuko, and K. Chiba (2014)
Int. Immunol.
   Abstract »    Full Text »    PDF »
Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy.
D.-H. Nguyen-Tran, N. C. Hait, H. Sperber, J. Qi, K. Fischer, N. Ieronimakis, M. Pantoja, A. Hays, J. Allegood, M. Reyes, et al. (2014)
Dis. Model. Mech. 7, 41-54
   Abstract »    Full Text »    PDF »
Quantifying the range of a lipid phosphate signal in vivo.
A. Mukherjee, R. A. Neher, and A. D. Renault (2013)
J. Cell Sci. 126, 5453-5464
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate can promote mast cell hyper-reactivity through regulation of contactin-4 expression.
A. Olivera, Y. Kitamura, L. D. Wright, M. L. Allende, W. Chen, T. Kaneko-Goto, Y. Yoshihara, R. L. Proia, and J. Rivera (2013)
J. Leukoc. Biol. 94, 1013-1024
   Abstract »    Full Text »    PDF »
5'-AMP impacts lymphocyte recirculation through activation of A2B receptors.
H. R. Bouma, J. N. Mandl, A. M. Strijkstra, A. S. Boerema, J.-W. Kok, A. van Dam, A. IJzerman, F. G. M. Kroese, and R. H. Henning (2013)
J. Leukoc. Biol. 94, 89-98
   Abstract »    Full Text »    PDF »
Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network.
M. Nagahashi, E. Y. Kim, A. Yamada, S. Ramachandran, J. C. Allegood, N. C. Hait, M. Maceyka, S. Milstien, K. Takabe, and S. Spiegel (2013)
FASEB J 27, 1001-1011
   Abstract »    Full Text »    PDF »
Sphingosine 1-Phosphate Receptor 1 (S1P1) Upregulation and Amelioration of Experimental Autoimmune Encephalomyelitis by an S1P1 Antagonist.
S. M. Cahalan, P. J. Gonzalez-Cabrera, N. Nguyen, M. Guerrero, E. A. G. Cisar, N. B. Leaf, S. J. Brown, E. Roberts, and H. Rosen (2013)
Mol. Pharmacol. 83, 316-321
   Abstract »    Full Text »    PDF »
Sphingosine 1-Phosphate Receptor Signaling Regulates Proper Embryonic Vascular Patterning.
K. Mendelson, T. Zygmunt, J. Torres-Vazquez, T. Evans, and T. Hla (2013)
J. Biol. Chem. 288, 2143-2156
   Abstract »    Full Text »    PDF »
Genetic elevation of Sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila.
M. Pantoja, K. A. Fischer, N. Ieronimakis, M. Reyes, and H. Ruohola-Baker (2013)
Development 140, 136-146
   Abstract »    Full Text »    PDF »
A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis.
L. Zhang, M. Orban, M. Lorenz, V. Barocke, D. Braun, N. Urtz, C. Schulz, M.-L. von Bruhl, A. Tirniceriu, F. Gaertner, et al. (2012)
J. Exp. Med. 209, 2165-2181
   Abstract »    Full Text »    PDF »
S1P and the birth of platelets.
T. Hla, S. Galvani, S. Rafii, and R. Nachman (2012)
J. Exp. Med. 209, 2137-2140
   Abstract »    Full Text »    PDF »
The functional roles of S1P in immunity.
Y. Hisano, T. Nishi, and A. Kawahara (2012)
J. Biochem. 152, 305-311
   Abstract »    Full Text »    PDF »
Expression of sphingosine 1-phosphate receptors in the rat dorsal root ganglia and defined single isolated sensory neurons.
J. S. Kays, C. Li, and G. D. Nicol (2012)
Physiol Genomics 44, 889-901
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues.
A. D. Borowsky, P. Bandhuvula, A. Kumar, Y. Yoshinaga, M. Nefedov, L. G. Fong, M. Zhang, B. Baridon, L. Dillard, P. de Jong, et al. (2012)
J. Lipid Res. 53, 1920-1931
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate-Induced Airway Hyper-Reactivity in Rodents Is Mediated by the Sphingosine-1-Phosphate Type 3 Receptor.
A. Trifilieff and J. R. Fozard (2012)
J. Pharmacol. Exp. Ther. 342, 399-406
   Abstract »    Full Text »    PDF »
Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease.
T. A. Natoli, H. Husson, K. A. Rogers, L. A. Smith, B. Wang, Y. Budman, N. O. Bukanov, S. R. Ledbetter, K. W. Klinger, J. P. Leonard, et al. (2012)
Hum. Mol. Genet. 21, 3397-3407
   Abstract »    Full Text »    PDF »
Chronic Alcohol Consumption Impairs Distribution and Compromises Circulation of B Cells in B16BL6 Melanoma-Bearing Mice.
H. Zhang, Z. Zhu, and G. G. Meadows (2012)
J. Immunol. 189, 1340-1348
   Abstract »    Full Text »    PDF »
The Role of Sphingosine-1-Phosphate Transporter Spns2 in Immune System Function.
A. Nijnik, S. Clare, C. Hale, J. Chen, C. Raisen, L. Mottram, M. Lucas, J. Estabel, E. Ryder, H. Adissu, et al. (2012)
J. Immunol. 189, 102-111
   Abstract »    Full Text »    PDF »
Expansion of Cortical and Medullary Sinuses Restrains Lymph Node Hypertrophy during Prolonged Inflammation.
K. W. Tan, K. P. Yeo, F. H. S. Wong, H. Y. Lim, K. L. Khoo, J.-P. Abastado, and V. Angeli (2012)
J. Immunol. 188, 4065-4080
   Abstract »    Full Text »    PDF »
S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release.
K. Golan, Y. Vagima, A. Ludin, T. Itkin, S. Cohen-Gur, A. Kalinkovich, O. Kollet, C. Kim, A. Schajnovitz, Y. Ovadya, et al. (2012)
Blood 119, 2478-2488
   Abstract »    Full Text »    PDF »
PSGL-1 Regulates the Migration and Proliferation of CD8+ T Cells under Homeostatic Conditions.
K. M. Veerman, D. A. Carlow, I. Shanina, J. J. Priatel, M. S. Horwitz, and H. J. Ziltener (2012)
J. Immunol. 188, 1638-1646
   Abstract »    Full Text »    PDF »
Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemoattractant desensitization.
C. Park, I.-Y. Hwang, R. K. Sinha, O. Kamenyeva, M. D. Davis, and J. H. Kehrl (2012)
Blood 119, 978-989
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice.
J. G. Juarez, N. Harun, M. Thien, R. Welschinger, R. Baraz, A. Dela Pena, S. M. Pitson, M. Rettig, J. F. DiPersio, K. F. Bradstock, et al. (2012)
Blood 119, 707-716
   Abstract »    Full Text »    PDF »
Amelioration of Collagen-Induced Arthritis by a Novel S1P1 Antagonist with Immunomodulatory Activities.
Y. Fujii, T. Hirayama, H. Ohtake, N. Ono, T. Inoue, T. Sakurai, T. Takayama, K. Matsumoto, N. Tsukahara, S. Hidano, et al. (2012)
J. Immunol. 188, 206-215
   Abstract »    Full Text »    PDF »
EBI2 Guides Serial Movements of Activated B Cells and Ligand Activity Is Detectable in Lymphoid and Nonlymphoid Tissues.
L. M. Kelly, J. P. Pereira, T. Yi, Y. Xu, and J. G. Cyster (2011)
J. Immunol. 187, 3026-3032
   Abstract »    Full Text »    PDF »
Defining the quantitative limits of intravital two-photon lymphocyte tracking.
J. Textor, A. Peixoto, S. E. Henrickson, M. Sinn, U. H. von Andrian, and J. Westermann (2011)
PNAS 108, 12401-12406
   Abstract »    Full Text »    PDF »
Purification and Identification of Activating Enzymes of CS-0777, a Selective Sphingosine 1-Phosphate Receptor 1 Modulator, in Erythrocytes.
K. Yonesu, K. Kubota, M. Tamura, S.-i. Inaba, T. Honda, C. Yahara, N. Watanabe, T. Matsuoka, and F. Nara (2011)
J. Biol. Chem. 286, 24765-24775
   Abstract »    Full Text »    PDF »
Dissecting the Role of the S1P/S1PR Axis in Health and Disease.
J. J. Aarthi, M. A. Darendeliler, and P. N. Pushparaj (2011)
Journal of Dental Research 90, 841-854
   Abstract »    PDF »
Lipid phosphate phosphatase 3 enables efficient thymic egress.
B. Breart, W. D. Ramos-Perez, A. Mendoza, A. K. Salous, M. Gobert, Y. Huang, R. H. Adams, J. J. Lafaille, D. Escalante-Alcalde, A. J. Morris, et al. (2011)
J. Exp. Med. 208, 1267-1278
   Abstract »    Full Text »    PDF »
BACE1 Activity Is Modulated by Cell-Associated Sphingosine-1-Phosphate.
N. Takasugi, T. Sasaki, K. Suzuki, S. Osawa, H. Isshiki, Y. Hori, N. Shimada, T. Higo, S. Yokoshima, T. Fukuyama, et al. (2011)
J. Neurosci. 31, 6850-6857
   Abstract »    Full Text »    PDF »
Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages.
T. McQuiston, C. Luberto, and M. Del Poeta (2011)
Microbiology 157, 1416-1427
   Abstract »    Full Text »    PDF »
The Selective Sphingosine 1-Phosphate Receptor 1 Agonist Ponesimod Protects against Lymphocyte-Mediated Tissue Inflammation.
L. Piali, S. Froidevaux, P. Hess, O. Nayler, M. H. Bolli, E. Schlosser, C. Kohl, B. Steiner, and M. Clozel (2011)
J. Pharmacol. Exp. Ther. 337, 547-556
   Abstract »    Full Text »    PDF »
S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart.
P. Bandhuvula, N. Honbo, G.-Y. Wang, Z.-Q. Jin, H. Fyrst, M. Zhang, A. D. Borowsky, L. Dillard, J. S. Karliner, and J. D. Saba (2011)
Am J Physiol Heart Circ Physiol 300, H1753-H1761
   Abstract »    Full Text »    PDF »
Local Inactivation of Sphingosine 1-Phosphate in Lymph Nodes Induces Lymphopenia.
S.-C. Sensken, M. Nagarajan, C. Bode, and M. H. Graler (2011)
J. Immunol. 186, 3432-3440
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate Lyase Deficiency Produces a Pro-inflammatory Response While Impairing Neutrophil Trafficking.
M. L. Allende, M. Bektas, B. G. Lee, E. Bonifacino, J. Kang, G. Tuymetova, W. Chen, J. D. Saba, and R. L. Proia (2011)
J. Biol. Chem. 286, 7348-7358
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate Receptor 3 Promotes Recruitment of Monocyte/Macrophages in Inflammation and Atherosclerosis.
P. Keul, S. Lucke, K. von Wnuck Lipinski, C. Bode, M. Graler, G. Heusch, and B. Levkau (2011)
Circ. Res. 108, 314-323
   Abstract »    Full Text »    PDF »
FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation.
J. W. Choi, S. E. Gardell, D. R. Herr, R. Rivera, C.-W. Lee, K. Noguchi, S. T. Teo, Y. C. Yung, M. Lu, G. Kennedy, et al. (2011)
PNAS 108, 751-756
   Abstract »    Full Text »    PDF »
The Sphingosine 1-Phosphate Receptor, S1PR1, Plays a Prominent But Not Exclusive Role in Enhancing the Excitability of Sensory Neurons.
X. X. Chi and G. D. Nicol (2010)
J Neurophysiol 104, 2741-2748
   Abstract »    Full Text »    PDF »
Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics.
S. Thangada, K. M. Khanna, V. A. Blaho, M. L. Oo, D.-S. Im, C. Guo, L. Lefrancois, and T. Hla (2010)
J. Exp. Med. 207, 1475-1483
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow.
Y. Maeda, N. Seki, N. Sato, K. Sugahara, and K. Chiba (2010)
Int. Immunol. 22, 515-525
   Abstract »    Full Text »    PDF »
S1P1 receptor directs the release of immature B cells from bone marrow into blood.
M. L. Allende, G. Tuymetova, B. G. Lee, E. Bonifacino, Y.-P. Wu, and R. L. Proia (2010)
J. Exp. Med. 207, 1113-1124
   Abstract »    Full Text »    PDF »
Redistribution of Sphingosine 1-Phosphate by Sphingosine Kinase 2 Contributes to Lymphopenia.
S. C. Sensken, C. Bode, M. Nagarajan, U. Peest, O. Pabst, and M. H. Graler (2010)
J. Immunol. 184, 4133-4142
   Abstract »    Full Text »    PDF »
Down-regulation of S1P1 Receptor Surface Expression by Protein Kinase C Inhibition.
S.-C. Sensken and M. H. Graler (2010)
J. Biol. Chem. 285, 6298-6307
   Abstract »    Full Text »    PDF »
Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning.
T. H.M. Pham, P. Baluk, Y. Xu, I. Grigorova, A. J. Bankovich, R. Pappu, S. R. Coughlin, D. M. McDonald, S. R. Schwab, and J. G. Cyster (2010)
J. Exp. Med. 207, 17-27
   Abstract »    Full Text »    PDF »
T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow.
C. N. Jenne, A. Enders, R. Rivera, S. R. Watson, A. J. Bankovich, J. P. Pereira, Y. Xu, C. M. Roots, J. N. Beilke, A. Banerjee, et al. (2009)
J. Exp. Med. 206, 2469-2481
   Abstract »    Full Text »    PDF »
Discontinued Postnatal Thymocyte Development in Sphingosine 1-Phosphate-Lyase-Deficient Mice.
C. Weber, A. Krueger, A. Munk, C. Bode, P. P. Van Veldhoven, and M. H. Graler (2009)
J. Immunol. 183, 4292-4301
   Abstract »    Full Text »    PDF »
Characterization of the ATP-dependent Sphingosine 1-Phosphate Transporter in Rat Erythrocytes.
N. Kobayashi, N. Kobayashi, A. Yamaguchi, and T. Nishi (2009)
J. Biol. Chem. 284, 21192-21200
   Abstract »    Full Text »    PDF »
Distinct Roles of Sphingosine Kinase 1 and 2 in Murine Collagen-Induced Arthritis.
W.-Q. Lai, A. W. Irwan, H. H. Goh, A. J. Melendez, I. B. McInnes, and B. P. Leung (2009)
J. Immunol. 183, 2097-2103
   Abstract »    Full Text »    PDF »
Immunosuppressive human anti-lymphocyte autoantibodies specific for the type 1 sphingosine 1-phosphate receptor.
J.-J. Liao, M.-C. Huang, K. Fast, K. Gundling, M. Yadav, J. R. Van Brocklyn, M. R. Wabl, and E. J. Goetzl (2009)
FASEB J 23, 1786-1796
   Abstract »    Full Text »    PDF »
Regulation of vascular physiology and pathology by the S1P2 receptor subtype.
A. Skoura and T. Hla (2009)
Cardiovasc Res 82, 221-228
   Abstract »    Full Text »    PDF »
Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25.
K. Gossens, S. Naus, S. Y. Corbel, S. Lin, F. M.V. Rossi, J. Kast, and H. J. Ziltener (2009)
J. Exp. Med. 206, 761-778
   Abstract »    Full Text »    PDF »
Settling the thymus: immigration requirements.
J. G. Cyster (2009)
J. Exp. Med. 206, 731-734
   Abstract »    Full Text »    PDF »
Accumulation of Fingolimod (FTY720) in Lymphoid Tissues Contributes to Prolonged Efficacy.
S.-C. Sensken, C. Bode, and M. H. Graler (2009)
J. Pharmacol. Exp. Ther. 328, 963-969
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: The ABCs of Lipophile Transport.
T. Hla and D.-S. Im (2009)
Science 323, 883-884
   Abstract »    Full Text »    PDF »
Role of the Molybdoflavoenzyme Aldehyde Oxidase Homolog 2 in the Biosynthesis of Retinoic Acid: Generation and Characterization of a Knockout Mouse.
M. Terao, M. Kurosaki, M. M. Barzago, M. Fratelli, R. Bagnati, A. Bastone, C. Giudice, E. Scanziani, A. Mancuso, C. Tiveron, et al. (2009)
Mol. Cell. Biol. 29, 357-377
   Abstract »    Full Text »    PDF »
Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin.
P. S. Kunwar, H. Sano, A. D. Renault, V. Barbosa, N. Fuse, and R. Lehmann (2008)
J. Cell Biol. 183, 157-168
   Abstract »    Full Text »    PDF »
Local Not Systemic Modulation of Dendritic Cell S1P Receptors in Lung Blunts Virus-Specific Immune Responses to Influenza.
D. Marsolais, B. Hahm, K. H. Edelmann, K. B. Walsh, M. Guerrero, Y. Hatta, Y. Kawaoka, E. Roberts, M. B. A. Oldstone, and H. Rosen (2008)
Mol. Pharmacol. 74, 896-903
   Abstract »    Full Text »    PDF »
Thymic Emigration: When and How T Cells Leave Home.
M. A. Weinreich and K. A. Hogquist (2008)
J. Immunol. 181, 2265-2270
   Abstract »    Full Text »    PDF »
Identifying Key Residues of Sphinganine-1-phosphate Lyase for Function in Vivo and in Vitro.
D. Mukhopadhyay, K. S. Howell, H. Riezman, and G. Capitani (2008)
J. Biol. Chem. 283, 20159-20169
   Abstract »    Full Text »    PDF »
"Inside-Out" Signaling of Sphingosine-1-Phosphate: Therapeutic Targets.
K. Takabe, S. W. Paugh, S. Milstien, and S. Spiegel (2008)
Pharmacol. Rev. 60, 181-195
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate-dependent trafficking of peritoneal B cells requires functional NF{kappa}B-inducing kinase in stromal cells.
J. Kunisawa, M. Gohda, Y. Kurashima, I. Ishikawa, M. Higuchi, and H. Kiyono (2008)
Blood 111, 4646-4652
   Abstract »    Full Text »    PDF »
Sphingosine 1-Phosphate Regulates the Egress of IgA Plasmablasts from Peyer's Patches for Intestinal IgA Responses.
M. Gohda, J. Kunisawa, F. Miura, Y. Kagiyama, Y. Kurashima, M. Higuchi, I. Ishikawa, I. Ogahara, and H. Kiyono (2008)
J. Immunol. 180, 5335-5343
   Abstract »    Full Text »    PDF »
Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate.
K. Venkataraman, Y.-M. Lee, J. Michaud, S. Thangada, Y. Ai, H. L. Bonkovsky, N. S. Parikh, C. Habrukowich, and T. Hla (2008)
Circ. Res. 102, 669-676
   Abstract »    Full Text »    PDF »
S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues.
M. L. Allende, D. Zhou, D. N. Kalkofen, S. Benhamed, G. Tuymetova, C. Borowski, A. Bendelac, and R. L. Proia (2008)
FASEB J 22, 307-315
   Abstract »    Full Text »    PDF »
A rapid fluorescence assay for sphingosine-1-phosphate lyase enzyme activity.
P. Bandhuvula, H. Fyrst, and J. D. Saba (2007)
J. Lipid Res. 48, 2769-2778
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium.
J. Kunisawa, Y. Kurashima, M. Higuchi, M. Gohda, I. Ishikawa, I. Ogahara, N. Kim, M. Shimizu, and H. Kiyono (2007)
J. Exp. Med. 204, 2335-2348
   Abstract »    Full Text »    PDF »
A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury.
Z.-Q. Jin, J. Zhang, Y. Huang, H. E. Hoover, D. A. Vessey, and J. S. Karliner (2007)
Cardiovasc Res 76, 41-50
   Abstract »    Full Text »    PDF »
Promotion of Lymphocyte Egress into Blood and Lymph by Distinct Sources of Sphingosine-1-Phosphate.
R. Pappu, S. R. Schwab, I. Cornelissen, J. P. Pereira, J. B. Regard, Y. Xu, E. Camerer, Y.-W. Zheng, Y. Huang, J. G. Cyster, et al. (2007)
Science 316, 295-298
   Abstract »    Full Text »    PDF »
Erythrocytes store and release sphingosine 1-phosphate in blood.
P. Hanel, P. Andreani, and M. H. Graler (2007)
FASEB J 21, 1202-1209
   Abstract »    Full Text »    PDF »
A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress.
C. Nombela-Arrieta, T. R. Mempel, S. F. Soriano, I. Mazo, M. P. Wymann, E. Hirsch, C. Martinez-A., Y. Fukui, U. H. von Andrian, and J. V. Stein (2007)
J. Exp. Med. 204, 497-510
   Abstract »    Full Text »    PDF »
CC Chemokine Receptor 7 Contributes to Gi-Dependent T Cell Motility in the Lymph Node.
T. Okada and J. G. Cyster (2007)
J. Immunol. 178, 2973-2978
   Abstract »    Full Text »    PDF »
The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors.
S. G. Payne, C. A. Oskeritzian, R. Griffiths, P. Subramanian, S. E. Barbour, C. E. Chalfant, S. Milstien, and S. Spiegel (2007)
Blood 109, 1077-1085
   Abstract »    Full Text »    PDF »
Distinctive T Cell-suppressive Signals from Nuclearized Type 1 Sphingosine 1-Phosphate G Protein-coupled Receptors.
J.-J. Liao, M.-C. Huang, M. Graler, Y. Huang, H. Qiu, and E. J. Goetzl (2007)
J. Biol. Chem. 282, 1964-1972
   Abstract »    Full Text »    PDF »
Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism.
K. Kabashima, N. M. Haynes, Y. Xu, S. L. Nutt, M. L. Allende, R. L. Proia, and J. G. Cyster (2006)
J. Exp. Med. 203, 2683-2690
   Abstract »    Full Text »    PDF »
Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia.
E. Kamphuis, T. Junt, Z. Waibler, R. Forster, and U. Kalinke (2006)
Blood 108, 3253-3261
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer.
B. Oskouian, P. Sooriyakumaran, A. D. Borowsky, A. Crans, L. Dillard-Telm, Y. Y. Tam, P. Bandhuvula, and J. D. Saba (2006)
PNAS 103, 17384-17389
   Abstract »    Full Text »    PDF »
Intracellular Role for Sphingosine Kinase 1 in Intestinal Adenoma Cell Proliferation.
M. Kohno, M. Momoi, M. L. Oo, J.-H. Paik, Y.-M. Lee, K. Venkataraman, Y. Ai, A. P. Ristimaki, H. Fyrst, H. Sano, et al. (2006)
Mol. Cell. Biol. 26, 7211-7223
   Abstract »    Full Text »    PDF »
The value of animal models for drug development in multiple sclerosis.
M. A. Friese, X. Montalban, N. Willcox, J. I. Bell, R. Martin, and L. Fugger (2006)
Brain 129, 1940-1952
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: Enhanced: Dietary Factors and Immunological Consequences.
T. Hla (2005)
Science 309, 1682-1683
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882