Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 309 (5744): 2232-2234

Copyright © 2005 by the American Association for the Advancement of Science

IP3 Receptor Types 2 and 3 Mediate Exocrine Secretion Underlying Energy Metabolism

Akira Futatsugi,1,2* Takeshi Nakamura,1,3 Maki K. Yamada,3 Etsuko Ebisui,1,2 Kyoko Nakamura,1,3 Keiko Uchida,3 Tetsuya Kitaguchi,2 Hiromi Takahashi-Iwanaga,4 Tetsuo Noda,5 Jun Aruga,2 Katsuhiko Mikoshiba1,2,3*

Abstract: Type 2 and type 3 inositol 1,4,5-trisphosphate receptors (IP3R2 and IP3R3) are intracellular calcium-release channels whose physiological roles are unknown. We show exocrine dysfunction in IP3R2 and IP3R3 double knock-out mice, which caused difficulties in nutrient digestion. Severely impaired calcium signaling in acinar cells of the salivary glands and the pancreas in the double mutants ascribed the secretion deficits to a lack of intracellular calcium release. Despite a normal caloric intake, the double mutants were hypoglycemic and lean. These results reveal IP3R2 and IP3R3 as key molecules in exocrine physiology underlying energy metabolism and animal growth.

1 Calcium Oscillation, International Cooperative Research Project, Japan Science and Technology Agency, Tokyo 108-0071, Japan.
2 Laboratory for Developmental Neurobiology, Brain Development Research Group, Brain Science Institute, RIKEN, Saitama 351-0198, Japan.
3 Division of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
4 Department of Anatomy, School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
5 Department of Cell Biology, Japanese Foundation for Cancer Research, Cancer Institute, Tokyo 170-8455, Japan.

* To whom correspondence should be addressed. E-mail: afutatsu{at}brain.riken.jp (A.F.); mikosiba{at}ims.u-tokyo.ac.jp (K.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Pannexin 3 Inhibits Proliferation of Osteoprogenitor Cells by Regulating Wnt and p21 Signaling.
M. Ishikawa, T. Iwamoto, S. Fukumoto, and Y. Yamada (2014)
J. Biol. Chem. 289, 2839-2851
   Abstract »    Full Text »    PDF »
The role of Ca2+ in the pathophysiology of pancreatitis.
J. V. Gerasimenko, O. V. Gerasimenko, and O. H. Petersen (2014)
J. Physiol. 592, 269-280
   Abstract »    Full Text »    PDF »
Functional Inositol 1,4,5-Trisphosphate Receptors Assembled from Concatenated Homo- and Heteromeric Subunits.
K. J. Alzayady, L. E. Wagner II, R. Chandrasekhar, A. Monteagudo, R. Godiska, G. G. Tall, S. K. Joseph, and D. I. Yule (2013)
J. Biol. Chem. 288, 29772-29784
   Abstract »    Full Text »    PDF »
Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1.
B. Pani, X. Liu, S. Bollimuntha, K. T. Cheng, I. R. Niesman, C. Zheng, V. R. Achen, H. H. Patel, I. S. Ambudkar, and B. B. Singh (2013)
J. Cell Sci. 126, 667-675
   Abstract »    Full Text »    PDF »
Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy.
F. M. Drawnel, D. Wachten, J. D. Molkentin, M. Maillet, J. M. Aronsen, F. Swift, I. Sjaastad, N. Liu, D. Catalucci, K. Mikoshiba, et al. (2012)
J. Cell Biol. 199, 783-798
   Abstract »    Full Text »    PDF »
No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle.
B. Blaauw, P. del Piccolo, L. Rodriguez, V.-H. Hernandez Gonzalez, L. Agatea, F. Solagna, F. Mammano, T. Pozzan, and S. Schiaffino (2012)
J. Gen. Physiol. 140, 235-241
   Abstract »    Full Text »    PDF »
Cot Kinase Promotes Ca2+ Oscillation/Calcineurin-Independent Osteoclastogenesis by Stabilizing NFATc1 Protein.
Y. Kuroda, C. Hisatsune, A. Mizutani, N. Ogawa, K. Matsuo, and K. Mikoshiba (2012)
Mol. Cell. Biol. 32, 2954-2963
   Abstract »    Full Text »    PDF »
Ryanodine receptors contribute to bile acid-induced pathological calcium signaling and pancreatitis in mice.
S. Z. Husain, A. I. Orabi, K. A. Muili, Y. Luo, S. Sarwar, S. M. Mahmood, D. Wang, R. Choo-Wing, V. P. Singh, J. Parness, et al. (2012)
Am J Physiol Gastrointest Liver Physiol 302, G1423-G1433
   Abstract »    Full Text »    PDF »
A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23.
X. Wu, G. Scelo, M. P. Purdue, N. Rothman, M. Johansson, Y. Ye, Z. Wang, D. Zelenika, L. E. Moore, C. G. Wood, et al. (2012)
Hum. Mol. Genet. 21, 456-462
   Abstract »    Full Text »    PDF »
Molecular Mechanism of Pancreatic and Salivary Gland Fluid and HCOFormula Secretion.
M. G. Lee, E. Ohana, H. W. Park, D. Yang, and S. Muallem (2012)
Physiol Rev 92, 39-74
   Abstract »    Full Text »    PDF »
Regulation of Ca2+ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells.
H. S. Park, M. J. Betzenhauser, Y. Zhang, and D. I. Yule (2012)
Am J Physiol Gastrointest Liver Physiol 302, G97-G104
   Abstract »    Full Text »    PDF »
Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity In Vivo.
N. Takata, T. Mishima, C. Hisatsune, T. Nagai, E. Ebisui, K. Mikoshiba, and H. Hirase (2011)
J. Neurosci. 31, 18155-18165
   Abstract »    Full Text »    PDF »
Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes.
R. Ye, M. Ni, M. Wang, S. Luo, G. Zhu, R. H. Chow, and A. S. Lee (2011)
J. Endocrinol. 210, 209-217
   Abstract »    Full Text »    PDF »
Expression, localization, and functional role for synaptotagmins in pancreatic acinar cells.
M. A. Falkowski, D. D. H. Thomas, S. W. Messenger, T. F. Martin, and G. E. Groblewski (2011)
Am J Physiol Gastrointest Liver Physiol 301, G306-G316
   Abstract »    Full Text »    PDF »
A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort.
D. M. Greenawalt, R. Dobrin, E. Chudin, I. J. Hatoum, C. Suver, J. Beaulaurier, B. Zhang, V. Castro, J. Zhu, S. K. Sieberts, et al. (2011)
Genome Res. 21, 1008-1016
   Abstract »    Full Text »    PDF »
Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation.
M. Ishikawa, T. Iwamoto, T. Nakamura, A. Doyle, S. Fukumoto, and Y. Yamada (2011)
J. Cell Biol. 193, 1257-1274
   Abstract »    Full Text »    PDF »
Isoform-specific Regulation of the Inositol 1,4,5-Trisphosphate Receptor by O-Linked Glycosylation.
P. Bimboese, C. J. Gibson, S. Schmidt, W. Xiang, and B. E. Ehrlich (2011)
J. Biol. Chem. 286, 15688-15697
   Abstract »    Full Text »    PDF »
Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca2+ release through IP3 receptors.
J. V. Gerasimenko, G. Lur, P. Ferdek, M. W. Sherwood, E. Ebisui, A. V. Tepikin, K. Mikoshiba, O. H. Petersen, and O. V. Gerasimenko (2011)
PNAS 108, 5873-5878
   Abstract »    Full Text »    PDF »
Structural Studies of Inositol 1,4,5-Trisphosphate Receptor: COUPLING LIGAND BINDING TO CHANNEL GATING.
J. Chan, H. Yamazaki, N. Ishiyama, M.-D. Seo, T. K. Mal, T. Michikawa, K. Mikoshiba, and M. Ikura (2010)
J. Biol. Chem. 285, 36092-36099
   Abstract »    Full Text »    PDF »
Tyr-167/Trp-168 in Type 1/3 Inositol 1,4,5-Trisphosphate Receptor Mediates Functional Coupling between Ligand Binding and Channel Opening.
H. Yamazaki, J. Chan, M. Ikura, T. Michikawa, and K. Mikoshiba (2010)
J. Biol. Chem. 285, 36081-36091
   Abstract »    Full Text »    PDF »
Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains.
J. T. Low, A. Shukla, N. Behrendorff, and P. Thorn (2010)
J. Cell Sci. 123, 3201-3208
   Abstract »    Full Text »    PDF »
Protein Kinase A Increases Type-2 Inositol 1,4,5-Trisphosphate Receptor Activity by Phosphorylation of Serine 937.
M. J. Betzenhauser, J. L. Fike, L. E. Wagner II, and D. I. Yule (2009)
J. Biol. Chem. 284, 25116-25125
   Abstract »    Full Text »    PDF »
Histamine H1 Receptor Induces Cytosolic Calcium Increase and Aquaporin Translocation in Human Salivary Gland Cells.
J.-H. Kim, S.-H. Park, Y. W. Moon, S. Hwang, D. Kim, S.-H. Jo, S. B. Oh, J. S. Kim, J. W. Jahng, J.-H. Lee, et al. (2009)
J. Pharmacol. Exp. Ther. 330, 403-412
   Abstract »    Full Text »    PDF »
Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors.
J. V. Gerasimenko, G. Lur, M. W. Sherwood, E. Ebisui, A. V. Tepikin, K. Mikoshiba, O. V. Gerasimenko, and O. H. Petersen (2009)
PNAS 106, 10758-10763
   Abstract »    Full Text »    PDF »
IP3 Receptor-Mediated Ca2+ Release in Naive CD4 T Cells Dictates Their Cytokine Program.
V. K. Nagaleekar, S. A. Diehl, I. Juncadella, C. Charland, N. Muthusamy, S. Eaton, L. Haynes, L. A. Garrett-Sinha, J. Anguita, and M. Rincon (2008)
J. Immunol. 181, 8315-8322
   Abstract »    Full Text »    PDF »
Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication.
B. E. Isakson (2008)
J. Cell Sci. 121, 3664-3673
   Abstract »    Full Text »    PDF »
Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells.
D. Hashimoto, M. Ohmuraya, M. Hirota, A. Yamamoto, K. Suyama, S. Ida, Y. Okumura, E. Takahashi, H. Kido, K. Araki, et al. (2008)
J. Cell Biol. 181, 1065-1072
   Abstract »    Full Text »    PDF »
Excitation-Contraction Coupling of the Mouse Embryonic Cardiomyocyte.
R. Rapila, T. Korhonen, and P. Tavi (2008)
J. Gen. Physiol. 132, 397-405
   Abstract »    Full Text »    PDF »
The Type 2 Inositol (1,4,5)-Trisphosphate (InsP3) Receptor Determines the Sensitivity of InsP3-induced Ca2+ Release to ATP in Pancreatic Acinar Cells.
H. S. Park, M. J. Betzenhauser, J. H. Won, J. Chen, and D. I. Yule (2008)
J. Biol. Chem. 283, 26081-26088
   Abstract »    Full Text »    PDF »
ATP Modulation of Ca2+ Release by Type-2 and Type-3 Inositol (1, 4, 5)-Triphosphate Receptors: DIFFERING ATP SENSITIVITIES AND MOLECULAR DETERMINANTS OF ACTION.
M. J. Betzenhauser, L. E. Wagner II, M. Iwai, T. Michikawa, K. Mikoshiba, and D. I. Yule (2008)
J. Biol. Chem. 283, 21579-21587
   Abstract »    Full Text »    PDF »
Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis.
Y. Kuroda, C. Hisatsune, T. Nakamura, K. Matsuo, and K. Mikoshiba (2008)
PNAS 105, 8643-8648
   Abstract »    Full Text »    PDF »
Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice.
P. D. Cani, R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck, N. M. Delzenne, and R. Burcelin (2008)
Diabetes 57, 1470-1481
   Abstract »    Full Text »    PDF »
Abnormal Taste Perception in Mice Lacking the Type 3 Inositol 1,4,5-Trisphosphate Receptor.
C. Hisatsune, K. Yasumatsu, H. Takahashi-Iwanaga, N. Ogawa, Y. Kuroda, R. Yoshida, Y. Ninomiya, and K. Mikoshiba (2007)
J. Biol. Chem. 282, 37225-37231
   Abstract »    Full Text »    PDF »
Role of Inositol 1,4,5-Trisphosphate Receptors in Apoptosis in DT40 Lymphocytes.
M. T. Khan, C. D. Bhanumathy, Z. T. Schug, and S. K. Joseph (2007)
J. Biol. Chem. 282, 32983-32990
   Abstract »    Full Text »    PDF »
Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1( / ) mice.
X. Liu, K. T. Cheng, B. C. Bandyopadhyay, B. Pani, A. Dietrich, B. C. Paria, W. D. Swaim, D. Beech, E. Yildrim, B. B. Singh, et al. (2007)
PNAS 104, 17542-17547
   Abstract »    Full Text »    PDF »
Inositol Trisphosphate Receptor Ca2+ Release Channels.
J. K. Foskett, C. White, K.-H. Cheung, and D.-O. D. Mak (2007)
Physiol Rev 87, 593-658
   Abstract »    Full Text »    PDF »
Protein kinase C phosphorylates the inositol 1,4,5-trisphosphate receptor type 2 and decreases the mobilization of Ca2+in pancreatoma AR4-2J cells.
G. Arguin, Y. Regimbald-Dumas, M.-O. Fregeau, A. Z Caron, and G. Guillemette (2007)
J. Endocrinol. 192, 659-668
   Abstract »    Full Text »    PDF »
Up-Regulated PAR-2-Mediated Salivary Secretion in Mice Deficient in Muscarinic Acetylcholine Receptor Subtypes.
T. Nishiyama, T. Nakamura, K. Obara, H. Inoue, K. Mishima, N. Matsumoto, M. Matsui, T. Manabe, K. Mikoshiba, and I. Saito (2007)
J. Pharmacol. Exp. Ther. 320, 516-524
   Abstract »    Full Text »    PDF »
Inositol 1,4,5-Trisphosphate Receptor Type 1 in Granule Cells, Not in Purkinje Cells, Regulates the Dendritic Morphology of Purkinje Cells through Brain-Derived Neurotrophic Factor Production..
C. Hisatsune, Y. Kuroda, T. Akagi, T. Torashima, H. Hirai, T. Hashikawa, T. Inoue, and K. Mikoshiba (2006)
J. Neurosci. 26, 10916-10924
   Abstract »    Full Text »    PDF »
IP3Rs are sufficient for dendritic cell Ca2+ signaling in the absence of RyR1.
M. Stolk, M. Leon-Ponte, M. Merrill, G. P. Ahern, and P. J. O'Connell (2006)
J. Leukoc. Biol. 80, 651-658
   Abstract »    Full Text »    PDF »
ATP Binding to a Unique Site in the Type-1 S2- Inositol 1,4,5-Trisphosphate Receptor Defines Susceptibility to Phosphorylation by Protein Kinase A.
L. E. Wagner II, M. J. Betzenhauser, and D. I. Yule (2006)
J. Biol. Chem. 281, 17410-17419
   Abstract »    Full Text »    PDF »
IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1).
K. Shirakabe, G. Priori, H. Yamada, H. Ando, S. Horita, T. Fujita, I. Fujimoto, A. Mizutani, G. Seki, and K. Mikoshiba (2006)
PNAS 103, 9542-9547
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882