Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 310 (5750): 1031-1034

Copyright © 2005 by the American Association for the Advancement of Science

The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley

Adrian Turner,* James Beales,* Sébastien Faure, Roy P. Dunford, David A. Laurie{dagger}

Abstract: Plants commonly use photoperiod (day length) to control the timing of flowering during the year, and variation in photoperiod response has been selected in many crops to provide adaptation to different environments and farming practices. Positional cloning identified Ppd-H1, the major determinant of barley photoperiod response, as a pseudo-response regulator, a class of genes involved in circadian clock function. Reduced photoperiod responsiveness of the ppd-H1 mutant, which is highly advantageous in spring-sown varieties, is explained by altered circadian expression of the photoperiod pathway gene CONSTANS and reduced expression of its downstream target, FT, a key regulator of flowering.

Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: david.laurie{at}

Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.
A. O. Diallo, Z. Agharbaoui, M. A. Badawi, M. A. Ali-Benali, A. Moheb, M. Houde, and F. Sarhan (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Evolutionary History of Wild Barley (Hordeum vulgare subsp. spontaneum) Analyzed Using Multilocus Sequence Data and Paleodistribution Modeling.
S. S. Jakob, D. Rodder, J. O. Engler, S. Shaaf, H. Ozkan, F. R. Blattner, and B. Kilian (2014)
Genome Biol Evol 6, 685-702
   Abstract »    Full Text »    PDF »
No Time for Spruce: Rapid Dampening of Circadian Rhythms in Picea abies (L. Karst).
N. Gyllenstrand, A. Karlgren, D. Clapham, K. Holm, A. Hall, P. D. Gould, T. Kallman, and U. Lagercrantz (2014)
Plant Cell Physiol. 55, 535-550
   Abstract »    Full Text »    PDF »
A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms.
R. Ariyadasa, M. Mascher, T. Nussbaumer, D. Schulte, Z. Frenkel, N. Poursarebani, R. Zhou, B. Steuernagel, H. Gundlach, S. Taudien, et al. (2014)
Plant Physiology 164, 412-423
   Abstract »    Full Text »    PDF »
Natural Variation in OsPRR37 Regulates Heading Date and Contributes to Rice Cultivation at a Wide Range of Latitudes.
B.-H. Koo, S.-C. Yoo, J.-W. Park, C.-T. Kwon, B.-D. Lee, G. An, Z. Zhang, J. Li, Z. Li, and N.-C. Paek (2013)
Mol Plant 6, 1877-1888
   Abstract »    Full Text »    PDF »
Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon.
L. Wu, D. Liu, J. Wu, R. Zhang, Z. Qin, D. Liu, A. Li, D. Fu, W. Zhai, and L. Mao (2013)
PLANT CELL 25, 4363-4377
   Abstract »    Full Text »    PDF »
Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1.
S. Pearce, L. S. Vanzetti, and J. Dubcovsky (2013)
Plant Physiology 163, 1433-1445
   Abstract »    Full Text »    PDF »
Phytochrome C Is A Key Factor Controlling Long-Day Flowering in Barley.
H. Nishida, D. Ishihara, M. Ishii, T. Kaneko, H. Kawahigashi, Y. Akashi, D. Saisho, K. Tanaka, H. Handa, K. Takeda, et al. (2013)
Plant Physiology 163, 804-814
   Abstract »    Full Text »    PDF »
Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different Photoperiod-1 (Ppd-1) alleles.
A. R. Bentley, R. Horsnell, C. P. Werner, A. S. Turner, G. A. Rose, C. Bedard, P. Howell, E. P. Wilhelm, I. J. Mackay, R. M. Howells, et al. (2013)
J. Exp. Bot. 64, 1783-1793
   Abstract »    Full Text »    PDF »
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
S. Perez-Santangelo, R. G. Schlaen, and M. J. Yanovsky (2013)
Briefings in Functional Genomics 12, 13-24
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Transcriptional repressor PRR5 directly regulates clock-output pathways.
N. Nakamichi, T. Kiba, M. Kamioka, T. Suzuki, T. Yamashino, T. Higashiyama, H. Sakakibara, and T. Mizuno (2012)
PNAS 109, 17123-17128
   Abstract »    Full Text »    PDF »
Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.
G. Zou, G. Zhai, Q. Feng, S. Yan, A. Wang, Q. Zhao, J. Shao, Z. Zhang, J. Zou, B. Han, et al. (2012)
J. Exp. Bot. 63, 5451-5462
   Abstract »    Full Text »    PDF »
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.
S. Faure, A. S. Turner, D. Gruszka, V. Christodoulou, S. J. Davis, M. von Korff, and D. A. Laurie (2012)
PNAS 109, 8328-8333
   Abstract »    Full Text »    PDF »
Identification of High-Temperature-Responsive Genes in Cereals.
M. N. Hemming, S. A. Walford, S. Fieg, E. S. Dennis, and B. Trevaskis (2012)
Plant Physiology 158, 1439-1450
   Abstract »    Full Text »    PDF »
The Molecular Basis of Vernalization in Different Plant Groups.
T. S. Ream, D. P. Woods, and R. M. Amasino (2012)
Cold Spring Harb Symp Quant Biol 77, 105-115
   Abstract »    Full Text »    PDF »
The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley.
R. Kikuchi, H. Kawahigashi, M. Oshima, T. Ando, and H. Handa (2012)
J. Exp. Bot. 63, 773-784
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum.
R. L. Murphy, R. R. Klein, D. T. Morishige, J. A. Brady, W. L. Rooney, F. R. Miller, D. V. Dugas, P. E. Klein, and J. E. Mullet (2011)
PNAS 108, 16469-16474
   Abstract »    Full Text »    PDF »
High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay.
I. Schmalenbach, T. J. March, T. Bringezu, R. Waugh, K. Pillen, and B. S. Gill (2011)
g3 1, 187-196
   Abstract »    Full Text »    PDF »
Unlocking the Barley Genome by Chromosomal and Comparative Genomics.
K. F. X. Mayer, M. Martis, P. E. Hedley, H. Simkova, H. Liu, J. A. Morris, B. Steuernagel, S. Taudien, S. Roessner, H. Gundlach, et al. (2011)
PLANT CELL 23, 1249-1263
   Abstract »    Full Text »    PDF »
Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days.
M. C. Casao, E. Igartua, I. Karsai, J. M. Lasa, M. P. Gracia, and A. M. Casas (2011)
J. Exp. Bot. 62, 1939-1949
   Abstract »    Full Text »    PDF »
Genetic and physiological bases for phenological responses to current and predicted climates.
A. M. Wilczek, L. T. Burghardt, A. R. Cobb, M. D. Cooper, S. M. Welch, and J. Schmitt (2010)
Phil Trans R Soc B 365, 3129-3147
   Abstract »    Full Text »    PDF »
Speciation genes in plants.
L. H. Rieseberg and B. K. Blackman (2010)
Ann. Bot. 106, 439-455
   Abstract »    Full Text »    PDF »
ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals.
A. G. Greenup, S. Sasani, S. N. Oliver, M. J. Talbot, E. S. Dennis, M. N. Hemming, and B. Trevaskis (2010)
Plant Physiology 153, 1062-1073
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the Arabidopsis Circadian Clock.
N. Nakamichi, T. Kiba, R. Henriques, T. Mizuno, N. H. Chua, and H. Sakakibara (2010)
PLANT CELL 22, 594-605
   Abstract »    Full Text »    PDF »
Genetic Control of Photoperiod Sensitivity in Maize Revealed by Joint Multiple Population Analysis.
N. D. Coles, M. D. McMullen, P. J. Balint-Kurti, R. C. Pratt, and J. B. Holland (2010)
Genetics 184, 799-812
   Abstract »    Full Text »    PDF »
Distinct Patterns of Genetic Variation Alter Flowering Responses of Arabidopsis Accessions to Different Daylengths.
A. Giakountis, F. Cremer, S. Sim, M. Reymond, J. Schmitt, and G. Coupland (2010)
Plant Physiology 152, 177-191
   Abstract »    Full Text »    PDF »
DIE NEUTRALIS and LATE BLOOMER 1 Contribute to Regulation of the Pea Circadian Clock.
L. C. Liew, V. Hecht, R. E. Laurie, C. L. Knowles, J. K. Vander Schoor, R. C. Macknight, and J. L. Weller (2009)
PLANT CELL 21, 3198-3211
   Abstract »    Full Text »    PDF »
A-maize-ing Diversity.
T. F. C. Mackay (2009)
Science 325, 688-689
   Abstract »    Full Text »    PDF »
The Genetic Architecture of Maize Flowering Time.
E. S. Buckler, J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown, C. Browne, E. Ersoz, S. Flint-Garcia, A. Garcia, J. C. Glaubitz, et al. (2009)
Science 325, 714-718
   Abstract »    Full Text »    PDF »
What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?.
C. Alonso-Blanco, M. G.M. Aarts, L. Bentsink, J. J.B. Keurentjes, M. Reymond, D. Vreugdenhil, and M. Koornneef (2009)
PLANT CELL 21, 1877-1896
   Abstract »    Full Text »    PDF »
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
A. Greenup, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2009)
Ann. Bot. 103, 1165-1172
   Abstract »    Full Text »    PDF »
The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare)..
S. Sasani, M. N. Hemming, S. N. Oliver, A. Greenup, R. Tavakkol-Afshari, S. Mahfoozi, K. Poustini, H.-R. Sharifi, E. S. Dennis, W. J. Peacock, et al. (2009)
J. Exp. Bot. 60, 2169-2178
   Abstract »    Full Text »    PDF »
Molecular and Functional Characterization of PEBP Genes in Barley Reveal the Diversification of Their Roles in Flowering.
R. Kikuchi, H. Kawahigashi, T. Ando, T. Tonooka, and H. Handa (2009)
Plant Physiology 149, 1341-1353
   Abstract »    Full Text »    PDF »
Mechanisms of Floral Induction in Grasses: Something Borrowed, Something New.
J. Colasanti and V. Coneva (2009)
Plant Physiology 149, 56-62
   Full Text »    PDF »
The International Barley Sequencing Consortium--At the Threshold of Efficient Access to the Barley Genome.
D. Schulte, T. J. Close, A. Graner, P. Langridge, T. Matsumoto, G. Muehlbauer, K. Sato, A. H. Schulman, R. Waugh, R. P. Wise, et al. (2009)
Plant Physiology 149, 142-147
   Full Text »    PDF »
Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat.
A. Distelfeld, G. Tranquilli, C. Li, L. Yan, and J. Dubcovsky (2009)
Plant Physiology 149, 245-257
   Abstract »    Full Text »    PDF »
The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat.
S. Lewis, M. E. Faricelli, M. L. Appendino, M. Valarik, and J. Dubcovsky (2008)
J. Exp. Bot. 59, 3595-3607
   Abstract »    Full Text »    PDF »
Population-Based Resequencing Reveals That the Flowering Time Adaptation of Cultivated Barley Originated East of the Fertile Crescent.
H. Jones, F. J. Leigh, I. Mackay, M. A. Bower, L. M.J. Smith, M. P. Charles, G. Jones, M. K. Jones, T. A. Brown, and W. Powell (2008)
Mol. Biol. Evol. 25, 2211-2219
   Abstract »    Full Text »    PDF »
Regulation of floral initiation in horticultural trees.
J. D. Wilkie, M. Sedgley, and T. Olesen (2008)
J. Exp. Bot. 59, 3215-3228
   Abstract »    Full Text »    PDF »
Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach.
I. Karsai, P. Szucs, B. Koszegi, P.M. Hayes, A. Casas, Z. Bedo, and O. Veisz (2008)
J. Exp. Bot. 59, 2707-2715
   Abstract »    Full Text »    PDF »
Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus.
T. Y. P. Chia, A. Muller, C. Jung, and E. S. Mutasa-Gottgens (2008)
J. Exp. Bot. 59, 2735-2748
   Abstract »    Full Text »    PDF »
Low-Temperature and Daylength Cues Are Integrated to Regulate FLOWERING LOCUS T in Barley.
M. N. Hemming, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2008)
Plant Physiology 147, 355-366
   Abstract »    Full Text »    PDF »
The Importance of Barley Genetics and Domestication in a Global Perspective.
M. Pourkheirandish and T. Komatsuda (2007)
Ann. Bot. 100, 999-1008
   Abstract »    Full Text »    PDF »
A Circadian Rhythm Set by Dusk Determines the Expression of FT Homologs and the Short-Day Photoperiodic Flowering Response in Pharbitis.
R. Hayama, B. Agashe, E. Luley, R. King, and G. Coupland (2007)
PLANT CELL 19, 2988-3000
   Abstract »    Full Text »    PDF »
Arabidopsis Clock-Associated Pseudo-Response Regulators PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway.
N. Nakamichi, M. Kita, K. Niinuma, S. Ito, T. Yamashino, T. Mizoguchi, and T. Mizuno (2007)
Plant Cell Physiol. 48, 822-832
   Abstract »    Full Text »    PDF »
Pea LATE BLOOMER1 Is a GIGANTEA Ortholog with Roles in Photoperiodic Flowering, Deetiolation, and Transcriptional Regulation of Circadian Clock Gene Homologs.
V. Hecht, C. L. Knowles, J. K. Vander Schoor, L. C. Liew, S. E. Jones, M. J.M. Lambert, and J. L. Weller (2007)
Plant Physiology 144, 648-661
   Abstract »    Full Text »    PDF »
The FLOWERING LOCUS T-Like Gene Family in Barley (Hordeum vulgare).
S. Faure, J. Higgins, A. Turner, and D. A. Laurie (2007)
Genetics 176, 599-609
   Abstract »    Full Text »    PDF »
Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
J. Cockram, H. Jones, F. J. Leigh, D. O'Sullivan, W. Powell, D. A. Laurie, and A. J. Greenland (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Comparative Overviews of Clock-Associated Genes of Arabidopsis thaliana and Oryza sativa.
M. Murakami, Y. Tago, T. Yamashino, and T. Mizuno (2007)
Plant Cell Physiol. 48, 110-121
   Abstract »    Full Text »    PDF »
Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley.
B. Trevaskis, M. Tadege, M. N. Hemming, W. J. Peacock, E. S. Dennis, and C. Sheldon (2007)
Plant Physiology 143, 225-235
   Abstract »    Full Text »    PDF »
The wheat and barley vernalization gene VRN3 is an orthologue of FT.
L. Yan, D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky (2006)
PNAS 103, 19581-19586
   Abstract »    Full Text »    PDF »
CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis.
S. Wenkel, F. Turck, K. Singer, L. Gissot, J. Le Gourrierec, A. Samach, and G. Coupland (2006)
PLANT CELL 18, 2971-2984
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882