Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 310 (5752): 1330-1333

Copyright © 2005 by the American Association for the Advancement of Science

LIN-12/Notch Activation Leads to MicroRNA-Mediated Down-Regulation of Vav in C. elegans

Andrew S. Yoo1, and Iva Greenwald2*

Abstract: Cell-cell interactions and cross-talk between signaling pathways specify Caenorhabditis elegans vulval precursor cells (VPCs) to adopt a spatial pattern: a central "1°" VPC, in which epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) activity is high and LIN-12/Notch activity is low, flanked by two "2°" VPCs, in which LIN-12/Notch activity is high and EGFR-MAPK activity is low. Here, we identify a microRNA gene, mir-61, as a direct transcriptional target of LIN-12 and show that expression of mir-61 promotes the 2° fate. We also identify vav-1, the ortholog of the Vav oncogene, as a target of mir-61, and show that down-regulation of VAV-1 promotes lin-12 activity in specifying the 2° fate. Our results suggest that lin-12, mir-61, and vav-1 form a feedback loop that helps maximize lin-12 activity in the presumptive 2° VPCs.

1 Integrated Program in Cellular, Molecular, and Biophysical Studies, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 West 168th Street, Room 720, New York, NY 10032, USA.
2 Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 West 168th Street, Room 720, New York, NY 10032, USA.

* To whom correspondence should be addressed. E-mail: greenwald{at}

A Key Regulatory Role for Vav1 in Controlling Lipopolysaccharide Endotoxemia via Macrophage-Derived IL-6.
S. Zenker, J. Panteleev-Ivlev, S. Wirtz, T. Kishimoto, M. J. Waldner, O. Ksionda, V. L. J. Tybulewicz, M. F. Neurath, and I. Atreya (2014)
J. Immunol. 192, 2830-2836
   Abstract »    Full Text »    PDF »
Control of cell-fate plasticity and maintenance of multipotency by DAF-16/FoxO in quiescent Caenorhabditis elegans.
X. Karp and I. Greenwald (2013)
PNAS 110, 2181-2186
   Abstract »    Full Text »    PDF »
The Conserved miR-51 microRNA Family Is Redundantly Required for Embryonic Development and Pharynx Attachment in Caenorhabditis elegans.
W. R. Shaw, J. Armisen, N. J. Lehrbach, and E. A. Miska (2010)
Genetics 185, 897-905
   Abstract »    Full Text »    PDF »
The Neuronal MicroRNA miR-326 Acts in a Feedback Loop with Notch and Has Therapeutic Potential against Brain Tumors.
B. Kefas, L. Comeau, D. H. Floyd, O. Seleverstov, J. Godlewski, T. Schmittgen, J. Jiang, C. G. diPierro, Y. Li, E. A. Chiocca, et al. (2009)
J. Neurosci. 29, 15161-15168
   Abstract »    Full Text »    PDF »
Systematic analysis of dynamic miRNA-target interactions during C. elegans development.
L. Zhang, M. Hammell, B. A. Kudlow, V. Ambros, and M. Han (2009)
Development 136, 3043-3055
   Abstract »    Full Text »    PDF »
miRNA Regulation Through Ligand Occupancy of a Nuclear Hormone Receptor.
A. E. Rougvie (2009)
Science Signaling 2, pe52
   Abstract »    Full Text »    PDF »
Executing multicellular differentiation: quantitative predictive modelling of C.elegans vulval development.
N. Bonzanni, E. Krepska, K. A. Feenstra, W. Fokkink, T. Kielmann, H. Bal, and J. Heringa (2009)
Bioinformatics 25, 2049-2056
   Abstract »    Full Text »    PDF »
Rac GTPases play critical roles in early T-cell development.
C. Dumont, A. Corsoni-Tadrzak, S. Ruf, J. de Boer, A. Williams, M. Turner, D. Kioussis, and V. L. J. Tybulewicz (2009)
Blood 113, 3990-3998
   Abstract »    Full Text »    PDF »
Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity.
N. J. Martinez, M. C. Ow, J. S. Reece-Hoyes, M. I. Barrasa, V. R. Ambros, and A. J.M. Walhout (2008)
Genome Res. 18, 2005-2015
   Abstract »    Full Text »    PDF »
Proteasomal Regulation of the Proliferation vs. Meiotic Entry Decision in the Caenorhabditis elegans Germ Line.
L. D. MacDonald, A. Knox, and D. Hansen (2008)
Genetics 180, 905-920
   Abstract »    Full Text »    PDF »
A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity.
N. J. Martinez, M. C. Ow, M. I. Barrasa, M. Hammell, R. Sequerra, L. Doucette-Stamm, F. P. Roth, V. R. Ambros, and A. J.M. Walhout (2008)
Genes & Dev. 22, 2535-2549
   Abstract »    Full Text »    PDF »
Functional genomic, computational and proteomic analysis of C. elegans microRNAs.
N. J. Lehrbach and E. A. Miska (2008)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans.
A. Neves, K. English, and J. R. Priess (2007)
Development 134, 4459-4468
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Receptor and Notch Pathways Participate in the Tumor Suppressor Function of {gamma}-Secretase.
T. Li, H. Wen, C. Brayton, P. Das, L. A. Smithson, A. Fauq, X. Fan, B. J. Crain, D. L. Price, T. E. Golde, et al. (2007)
J. Biol. Chem. 282, 32264-32273
   Abstract »    Full Text »    PDF »
Presenilins regulate {alpha}{beta} T cell development by modulating TCR signaling.
K. Laky and B.J. Fowlkes (2007)
J. Exp. Med. 204, 2115-2129
   Abstract »    Full Text »    PDF »
SEL-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells.
N. de Souza, L. G. Vallier, H. Fares, and I. Greenwald (2007)
Development 134, 691-702
   Abstract »    Full Text »    PDF »
Notch and Wnt Signaling: Mimicry and Manipulation by Gamma Herpesviruses.
S. D. Hayward, J. Liu, and M. Fujimuro (2006)
Sci. STKE 2006, re4
   Abstract »    Full Text »    PDF »
MicroRNA fingerprints during human megakaryocytopoiesis.
R. Garzon, F. Pichiorri, T. Palumbo, R. Iuliano, A. Cimmino, R. Aqeilan, S. Volinia, D. Bhatt, H. Alder, G. Marcucci, et al. (2006)
PNAS 103, 5078-5083
   Abstract »    Full Text »    PDF »
MicroRNA Function and Mechanism: Insights from Zebra Fish.
A.F. SCHIER and A.J. GIRALDEZ (2006)
Cold Spring Harb Symp Quant Biol 71, 195-203
   Abstract »    PDF »
DEVELOPMENTAL BIOLOGY: Enhanced: Encountering MicroRNAs in Cell Fate Signaling.
X. Karp and V. Ambros (2005)
Science 310, 1288-1289
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882