Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 310 (5754): 1642-1646

Copyright © 2005 by the American Association for the Advancement of Science

The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin

Reuben J. Shaw,1,2*{dagger} Katja A. Lamia,1,2 Debbie Vasquez,2 Seung-Hoi Koo,3,4 Nabeel Bardeesy,5 Ronald A. DePinho,6 Marc Montminy,3 Lewis C. Cantley1,2

Abstract: The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)–activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element–binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-{gamma} coactivator 1{alpha} (PGC-1{alpha}), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1{alpha} expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.

1 Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
2 Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
3 Peptide Biology Laboratories, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
4 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
5 Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
6 Center for Applied Cancer Science and Department of Medical Oncology, Dana Farber Cancer Institute and Departments of Medicine and Genetics, Harvard Medical School, Boston, MA 02115, USA.

{dagger} Present address: Molecular and Cell Biology Laboratories, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037–1002, USA.

* To whom correspondence should be addressed. E-mail: shaw{at}

An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.
N.-R. Shin, J.-C. Lee, H.-Y. Lee, M.-S. Kim, T. W. Whon, M.-S. Lee, and J.-W. Bae (2014)
Gut 63, 727-735
   Abstract »    Full Text »    PDF »
Human {beta}-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map.
E. Bernal-Mizrachi, R. N. Kulkarni, D. K. Scott, F. Mauvais-Jarvis, A. F. Stewart, and A. Garcia-Ocana (2014)
Diabetes 63, 819-831
   Abstract »    Full Text »    PDF »
Metformin Lowers Plasma Triglycerides by Promoting VLDL-Triglyceride Clearance by Brown Adipose Tissue in Mice.
J. J. Geerling, M. R. Boon, G. C. van der Zon, S. A. A. van den Berg, A. M. van den Hoek, M. Lombes, H. M. G. Princen, L. M. Havekes, P. C. N. Rensen, and B. Guigas (2014)
Diabetes 63, 880-891
   Abstract »    Full Text »    PDF »
5'-AMP-Activated Protein Kinase Attenuates Adriamycin-Induced Oxidative Podocyte Injury through Thioredoxin-Mediated Suppression of the Apoptosis Signal-Regulating Kinase 1-P38 Signaling Pathway.
K. Gao, Y. Chi, W. Sun, M. Takeda, and J. Yao (2014)
Mol. Pharmacol. 85, 460-471
   Abstract »    Full Text »    PDF »
5-Aminoimidazole-4-carboxamide-1-{beta}-D-ribofuranoside (AICAR) Effect on Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo.
C. M. Hasenour, D. E. Ridley, C. C. Hughey, F. D. James, E. P. Donahue, J. Shearer, B. Viollet, M. Foretz, and D. H. Wasserman (2014)
J. Biol. Chem. 289, 5950-5959
   Abstract »    Full Text »    PDF »
Arginine Methylation of CRTC2 Is Critical in the Transcriptional Control of Hepatic Glucose Metabolism.
H.-S. Han, C.-Y. Jung, Y.-S. Yoon, S. Choi, D. Choi, G. Kang, K.-G. Park, S.-T. Kim, and S.-H. Koo (2014)
Science Signaling 7, ra19
   Abstract »    Full Text »    PDF »
Valproic Acid Is a Novel Activator of AMP-Activated Protein Kinase and Decreases Liver Mass, Hepatic Fat Accumulation, and Serum Glucose in Obese Mice.
L. B. Avery and N. N. Bumpus (2014)
Mol. Pharmacol. 85, 1-10
   Abstract »    Full Text »    PDF »
Metformin targets c-MYC oncogene to prevent prostate cancer.
T. Akinyeke, S. Matsumura, X. Wang, Y. Wu, E. D. Schalfer, A. Saxena, W. Yan, S. K. Logan, and X. Li (2013)
Carcinogenesis 34, 2823-2832
   Abstract »    Full Text »    PDF »
Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors.
V. Nair, S. Pathi, I. Jutooru, S. Sreevalsan, R. Basha, M. Abdelrahim, I. Samudio, and S. Safe (2013)
Carcinogenesis 34, 2870-2879
   Abstract »    Full Text »    PDF »
5'-AMP-Activated Protein Kinase-Activating Transcription Factor 1 Cascade Modulates Human Monocyte-Derived Macrophages to Atheroprotective Functions in Response to Heme or Metformin.
X. Wan, Y. Huo, M. Johns, E. Piper, J. C. Mason, D. Carling, D. O. Haskard, and J. J. Boyle (2013)
Arterioscler Thromb Vasc Biol 33, 2470-2480
   Abstract »    Full Text »    PDF »
The Med1 Subunit of the Mediator Complex Induces Liver Cell Proliferation and Is Phosphorylated by AMP Kinase.
N. Viswakarma, Y. Jia, L. Bai, Q. Gao, B. Lin, X. Zhang, P. Misra, A. Rana, S. Jain, F. J. Gonzalez, et al. (2013)
J. Biol. Chem. 288, 27898-27911
   Abstract »    Full Text »    PDF »
Tetrahydrobiopterin Has a Glucose-Lowering Effect by Suppressing Hepatic Gluconeogenesis in an Endothelial Nitric Oxide Synthase-Dependent Manner in Diabetic Mice.
A. Abudukadier, Y. Fujita, A. Obara, A. Ohashi, T. Fukushima, Y. Sato, M. Ogura, Y. Nakamura, S. Fujimoto, M. Hosokawa, et al. (2013)
Diabetes 62, 3033-3043
   Abstract »    Full Text »    PDF »
Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease.
J. Satriano, K. Sharma, R. C. Blantz, and A. Deng (2013)
Am J Physiol Renal Physiol 305, F727-F733
   Abstract »    Full Text »    PDF »
Metformin augments the levels of molecules that regulate the expression of the insulin-dependent glucose transporter GLUT4 in the endometria of hyperinsulinemic PCOS patients.
R. Carvajal, C. Rosas, K. Kohan, F. Gabler, D. Vantman, C. Romero, and M. Vega (2013)
Hum. Reprod. 28, 2235-2244
   Abstract »    Full Text »    PDF »
Inhibition of Lung Tumorigenesis by Metformin Is Associated with Decreased Plasma IGF-I and Diminished Receptor Tyrosine Kinase Signaling.
B. J. Quinn, M. Dallos, H. Kitagawa, A. B. Kunnumakkara, R. M. Memmott, M. C. Hollander, J. J. Gills, and P. A. Dennis (2013)
Cancer Prevention Research 6, 801-810
   Abstract »    Full Text »    PDF »
Metformin inhibits goitrogenous effects of type 2 diabetes.
T. Ittermann, M. R. P. Markus, S. Schipf, M. Derwahl, C. Meisinger, and H. Volzke (2013)
Eur. J. Endocrinol. 169, 9-15
   Abstract »    Full Text »    PDF »
AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer.
D. G. Hardie (2013)
Diabetes 62, 2164-2172
   Abstract »    Full Text »    PDF »
cAMP-responsive Element-binding Protein (CREB)-regulated Transcription Coactivator 2 (CRTC2) Promotes Glucagon Clearance and Hepatic Amino Acid Catabolism to Regulate Glucose Homeostasis.
D. M. Erion, M. E. Kotas, J. McGlashon, S. Yonemitsu, J. J. Hsiao, Y. Nagai, T. Iwasaki, S. F. Murray, S. Bhanot, G. W. Cline, et al. (2013)
J. Biol. Chem. 288, 16167-16176
   Abstract »    Full Text »    PDF »
Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies.
H.-P. Chen, J.-J. Shieh, C.-C. Chang, T.-T. Chen, J.-T. Lin, M.-S. Wu, J.-H. Lin, and C.-Y. Wu (2013)
Gut 62, 606-615
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases.
D. R. Walkinshaw, R. Weist, G.-W. Kim, L. You, L. Xiao, J. Nie, C. S. Li, S. Zhao, M. Xu, and X.-J. Yang (2013)
J. Biol. Chem. 288, 9345-9362
   Abstract »    Full Text »    PDF »
Emodin Regulates Glucose Utilization by Activating AMP-activated Protein Kinase.
P. Song, J. H. Kim, J. Ghim, J. H. Yoon, A. Lee, Y. Kwon, H. Hyun, H.-Y. Moon, H.-S. Choi, P.-O. Berggren, et al. (2013)
J. Biol. Chem. 288, 5732-5742
   Abstract »    Full Text »    PDF »
Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth.
H. A. Hirsch, D. Iliopoulos, and K. Struhl (2013)
PNAS 110, 972-977
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases: Thematic Review Series: New Lipid and Lipoprotein Targets for the Treatment of Cardiometabolic Diseases.
R. A. K. Srivastava, S. L. Pinkosky, S. Filippov, J. C. Hanselman, C. T. Cramer, and R. S. Newton (2012)
J. Lipid Res. 53, 2490-2514
   Abstract »    Full Text »    PDF »
Carbon Source and Myc Expression Influence the Antiproliferative Actions of Metformin.
S. Javeshghani, M. Zakikhani, S. Austin, M. Bazile, M.-J. Blouin, I. Topisirovic, J. St-Pierre, and M. N. Pollak (2012)
Cancer Res. 72, 6257-6267
   Abstract »    Full Text »    PDF »
Leptin Activates Hepatic 5'-AMP-activated Protein Kinase through Sympathetic Nervous System and {alpha}1-Adrenergic Receptor: A POTENTIAL MECHANISM FOR IMPROVEMENT OF FATTY LIVER IN LIPODYSTROPHY BY LEPTIN.
L. Miyamoto, K. Ebihara, T. Kusakabe, D. Aotani, S. Yamamoto-Kataoka, T. Sakai, M. Aizawa-Abe, Y. Yamamoto, J. Fujikura, T. Hayashi, et al. (2012)
J. Biol. Chem. 287, 40441-40447
   Abstract »    Full Text »    PDF »
Glioma-Initiating Cell Elimination by Metformin Activation of FOXO3 via AMPK.
A. Sato, J. Sunayama, M. Okada, E. Watanabe, S. Seino, K. Shibuya, K. Suzuki, Y. Narita, S. Shibui, T. Kayama, et al. (2012)
Stem Cells Trans Med 1, 811-824
   Abstract »    Full Text »    PDF »
Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation.
Y. D. Kim, T. Li, S.-W. Ahn, D.-K. Kim, J.-M. Lee, S.-L. Hwang, Y.-H. Kim, C.-H. Lee, I.-K. Lee, J. Y. L. Chiang, et al. (2012)
J. Biol. Chem. 287, 37098-37108
   Abstract »    Full Text »    PDF »
S-adenosylmethionine in Liver Health, Injury, and Cancer.
S. C. Lu and J. M. Mato (2012)
Physiol Rev 92, 1515-1542
   Abstract »    Full Text »    PDF »
Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning.
M. N. Pollak (2012)
Cancer Discovery 2, 778-790
   Abstract »    Full Text »    PDF »
Methazolamide Is a New Hepatic Insulin Sensitizer That Lowers Blood Glucose In Vivo.
N. Konstantopoulos, J. C. Molero, S. L. McGee, B. Spolding, T. Connor, M. de Vries, S. Wanyonyi, R. Fahey, S. Morrison, C. Swinton, et al. (2012)
Diabetes 61, 2146-2154
   Abstract »    Full Text »    PDF »
Metformin: A Diabetes Drug for Cancer, or a Cancer Drug for Diabetics?.
M. Martin and R. Marais (2012)
J. Clin. Oncol. 30, 2698-2700
   Full Text »    PDF »
Lysophosphatidic Acid Activates Lipogenic Pathways and de Novo Lipid Synthesis in Ovarian Cancer Cells.
A. Mukherjee, J. Wu, S. Barbour, and X. Fang (2012)
J. Biol. Chem. 287, 24990-25000
   Abstract »    Full Text »    PDF »
The Lyn Kinase Activator MLR-1023 Is a Novel Insulin Receptor Potentiator that Elicits a Rapid-Onset and Durable Improvement in Glucose Homeostasis in Animal Models of Type 2 Diabetes.
A. R. Ochman, C. A. Lipinski, J. A. Handler, A. G. Reaume, and M. S. Saporito (2012)
J. Pharmacol. Exp. Ther. 342, 23-32
   Abstract »    Full Text »    PDF »
Defining the Contribution of AMP-activated Protein Kinase (AMPK) and Protein Kinase C (PKC) in Regulation of Glucose Uptake by Metformin in Skeletal Muscle Cells.
S. Turban, C. Stretton, O. Drouin, C. J. Green, M. L. Watson, A. Gray, F. Ross, L. Lantier, B. Viollet, D. G. Hardie, et al. (2012)
J. Biol. Chem. 287, 20088-20099
   Abstract »    Full Text »    PDF »
Metformin and Pancreatic Cancer: A Clue Requiring Investigation.
M. Pollak (2012)
Clin. Cancer Res. 18, 2723-2725
   Abstract »    Full Text »    PDF »
Metformin and the mTOR Inhibitor Everolimus (RAD001) Sensitize Breast Cancer Cells to the Cytotoxic Effect of Chemotherapeutic Drugs In Vitro.
Anticancer Res 32, 1627-1637
   Abstract »    Full Text »    PDF »
Metformin Accelerates the Growth of BRAFV600E-Driven Melanoma by Upregulating VEGF-A.
M. J. Martin, R. Hayward, A. Viros, and R. Marais (2012)
Cancer Discovery 2, 344-355
   Abstract »    Full Text »    PDF »
Metformin and Hepatic Carcinogenesis.
M. Pollak and A. M. Gonzalez-Angulo (2012)
Cancer Prevention Research 5, 500-502
   Abstract »    Full Text »    PDF »
Metformin Prevents Liver Tumorigenesis by Inhibiting Pathways Driving Hepatic Lipogenesis.
K. Bhalla, B. J. Hwang, R. E. Dewi, W. Twaddel, O. G. Goloubeva, K.-K. Wong, N. K. Saxena, S. Biswal, and G. D. Girnun (2012)
Cancer Prevention Research 5, 544-552
   Abstract »    Full Text »    PDF »
Metformin Prevents the Development of Oral Squamous Cell Carcinomas from Carcinogen-Induced Premalignant Lesions.
L. Vitale-Cross, A. A. Molinolo, D. Martin, R. H. Younis, T. Maruyama, V. Patel, W. Chen, A. Schneider, and J. S. Gutkind (2012)
Cancer Prevention Research 5, 562-573
   Abstract »    Full Text »    PDF »
Metformin Reduces Endogenous Reactive Oxygen Species and Associated DNA Damage.
C. Algire, O. Moiseeva, X. Deschenes-Simard, L. Amrein, L. Petruccelli, E. Birman, B. Viollet, G. Ferbeyre, and M. N. Pollak (2012)
Cancer Prevention Research 5, 536-543
   Abstract »    Full Text »    PDF »
Metformin in cancer: translational challenges.
R. J. O. Dowling, S. Niraula, V. Stambolic, and P. J. Goodwin (2012)
J. Mol. Endocrinol. 48, R31-R43
   Abstract »    Full Text »    PDF »
Metformin and Cancer Stem Cells: Old Drug, New Targets.
F. Bednar and D. M. Simeone (2012)
Cancer Prevention Research 5, 351-354
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analysis of Mouse Thymoma Cells Treated With Tributyltin Oxide: TBTO Affects Proliferation and Energy Sensing Pathways.
A. M. Osman and H. van Loveren (2012)
Toxicol. Sci. 126, 84-100
   Abstract »    Full Text »    PDF »
Metformin Inhibits Cell Proliferation, Migration and Invasion by Attenuating CSC Function Mediated by Deregulating miRNAs in Pancreatic Cancer Cells.
B. Bao, Z. Wang, S. Ali, A. Ahmad, A. S. Azmi, S. H. Sarkar, S. Banerjee, D. Kong, Y. Li, S. Thakur, et al. (2012)
Cancer Prevention Research 5, 355-364
   Abstract »    Full Text »    PDF »
Use of Metformin Is Not Associated with a Decreased Risk of Colorectal Cancer: A Case-Control Analysis.
M. Bodmer, C. Becker, C. Meier, S. S. Jick, and C. R. Meier (2012)
Cancer Epidemiol. Biomarkers Prev. 21, 280-286
   Abstract »    Full Text »    PDF »
Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells.
B. Salani, S. Maffioli, M. Hamoudane, A. Parodi, S. Ravera, M. Passalacqua, A. Alama, M. Nhiri, R. Cordera, and D. Maggi (2012)
FASEB J 26, 788-798
   Abstract »    Full Text »    PDF »
Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor {gamma} Coactivator 1-{alpha} (PGC-1{alpha}) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver: INDUCTION OF INTERLEUKIN 1 RECEPTOR ANTAGONIST.
M. Buler, S.-M. Aatsinki, R. Skoumal, Z. Komka, M. Toth, R. Kerkela, A. Georgiadi, S. Kersten, and J. Hakkola (2012)
J. Biol. Chem. 287, 1847-1860
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase.
S. Bang, S. Kim, M. J. Dailey, Y. Chen, T. H. Moran, S. H. Snyder, and S. F. Kim (2012)
PNAS 109, 616-620
   Abstract »    Full Text »    PDF »
The Fire Within: Cardiac Inflammatory Signaling in Health and Disease.
M. Coggins and A. Rosenzweig (2012)
Circ. Res. 110, 116-125
   Abstract »    Full Text »    PDF »
The tumor suppressor kinase LKB1: lessons from mouse models.
S. Ollila and T. P. Makela (2011)
J Mol Cell Biol 3, 330-340
   Abstract »    Full Text »    PDF »
Metformin in prostate cancer: two for the price of one.
A. Clements, B. Gao, S. H. O. Yeap, M. K. Y. Wong, S. S. Ali, and H. Gurney (2011)
Ann. Onc. 22, 2556-2560
   Abstract »    Full Text »    PDF »
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia.
P. W. Seo-Mayer, G. Thulin, L. Zhang, D. S. Alves, T. Ardito, M. Kashgarian, and M. J. Caplan (2011)
Am J Physiol Renal Physiol 301, F1346-F1357
   Abstract »    Full Text »    PDF »
Dual Inhibition of Tumor Energy Pathway by 2-Deoxyglucose and Metformin Is Effective against a Broad Spectrum of Preclinical Cancer Models.
J.-H. Cheong, E. S. Park, J. Liang, J. B. Dennison, D. Tsavachidou, C. Nguyen-Charles, K. Wa Cheng, H. Hall, D. Zhang, Y. Lu, et al. (2011)
Mol. Cancer Ther. 10, 2350-2362
   Abstract »    Full Text »    PDF »
IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer.
C. J. Dool, H. Mashhedi, M. Zakikhani, S. David, Y. Zhao, E. Birman, J. M. Carboni, M. Gottardis, M.-J. Blouin, and M. Pollak (2011)
Endocr. Relat. Cancer 18, 699-709
   Abstract »    Full Text »    PDF »
The Liver Kinase B1 Is a Central Regulator of T Cell Development, Activation, and Metabolism.
N. J. MacIver, J. Blagih, D. C. Saucillo, L. Tonelli, T. Griss, J. C. Rathmell, and R. G. Jones (2011)
J. Immunol. 187, 4187-4198
   Abstract »    Full Text »    PDF »
Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes: A meta-analysis.
Z.-J. Zhang, Z.-J. Zheng, H. Kan, Y. Song, W. Cui, G. Zhao, and K. E. Kip (2011)
Diabetes Care 34, 2323-2328
   Abstract »    Full Text »    PDF »
Insulin resistance and hepatitis C: an evolving story.
M. Eslam, M. A. Khattab, and S. A. Harrison (2011)
Gut 60, 1139-1151
   Abstract »    Full Text »    PDF »
World Congress on Insulin Resistance, Diabetes, and Cardiovascular Disease: Part 1.
Z. T. Bloomgarden (2011)
Diabetes Care 34, e115-120
   Full Text »    PDF »
Role of cAMP-responsive Element-binding Protein (CREB)-regulated Transcription Coactivator 3 (CRTC3) in the Initiation of Mitochondrial Biogenesis and Stress Response in Liver Cells.
T. A. Than, H. Lou, C. Ji, S. Win, and N. Kaplowitz (2011)
J. Biol. Chem. 286, 22047-22054
   Abstract »    Full Text »    PDF »
Metformin Amplifies Chemotherapy-Induced AMPK Activation and Antitumoral Growth.
G. Z. Rocha, M. M. Dias, E. R. Ropelle, F. Osorio-Costa, F. A. Rossato, A. E. Vercesi, M. J. A. Saad, and J. B. C. Carvalheira (2011)
Clin. Cancer Res. 17, 3993-4005
   Abstract »    Full Text »    PDF »
Impact of a Glycogen Phosphorylase Inhibitor and Metformin on Basal and Glucagon-Stimulated Hepatic Glucose Flux in Conscious Dogs.
T. P. Torres, N. Sasaki, E. P. Donahue, B. Lacy, R. L. Printz, A. D. Cherrington, J. L. Treadway, and M. Shiota (2011)
J. Pharmacol. Exp. Ther. 337, 610-620
   Abstract »    Full Text »    PDF »
Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver.
Y. Li, S. Xu, A. Giles, K. Nakamura, J. W. Lee, X. Hou, G. Donmez, J. Li, Z. Luo, K. Walsh, et al. (2011)
FASEB J 25, 1664-1679
   Abstract »    Full Text »    PDF »
Sensing of energy and nutrients by AMP-activated protein kinase.
D. G. Hardie (2011)
Am J Clin Nutr 93, 891S-896S
   Abstract »    Full Text »    PDF »
Involvement of Oxygen-regulated Protein 150 in AMP-activated Protein Kinase-mediated Alleviation of Lipid-induced Endoplasmic Reticulum Stress.
Y. Wang, Z. Wu, D. Li, D. Wang, X. Wang, X. Feng, and M. Xia (2011)
J. Biol. Chem. 286, 11119-11131
   Abstract »    Full Text »    PDF »
Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice.
M. Claret, M. A. Smith, C. Knauf, H. Al-Qassab, A. Woods, A. Heslegrave, K. Piipari, J. J. Emmanuel, A. Colom, P. Valet, et al. (2011)
Diabetes 60, 735-745
   Abstract »    Full Text »    PDF »
Tubular Injury in a Rat Model of Type 2 Diabetes Is Prevented by Metformin: A Possible Role of HIF-1α Expression and Oxygen Metabolism.
Y. Takiyama, T. Harumi, J. Watanabe, Y. Fujita, J. Honjo, N. Shimizu, Y. Makino, and M. Haneda (2011)
Diabetes 60, 981-992
   Abstract »    Full Text »    PDF »
Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.
V. Takiar, S. Nishio, P. Seo-Mayer, J. D. King Jr., H. Li, L. Zhang, A. Karihaloo, K. R. Hallows, S. Somlo, and M. J. Caplan (2011)
PNAS 108, 2462-2467
   Abstract »    Full Text »    PDF »
Metformin and the Incidence of Prostate Cancer in Patients with Type 2 Diabetes.
L. Azoulay, S. Dell'Aniello, B. Gagnon, M. Pollak, and S. Suissa (2011)
Cancer Epidemiol. Biomarkers Prev. 20, 337-344
   Abstract »    Full Text »    PDF »
Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy.
D. F. Egan, D. B. Shackelford, M. M. Mihaylova, S. Gelino, R. A. Kohnz, W. Mair, D. S. Vasquez, A. Joshi, D. M. Gwinn, R. Taylor, et al. (2011)
Science 331, 456-461
   Abstract »    Full Text »    PDF »
Metformin Activates AMP Kinase through Inhibition of AMP Deaminase.
J. Ouyang, R. A. Parakhia, and R. S. Ochs (2011)
J. Biol. Chem. 286, 1-11
   Abstract »    Full Text »    PDF »
Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-{beta} peptide degradation.
V. Vingtdeux, P. Chandakkar, H. Zhao, C. d'Abramo, P. Davies, and P. Marambaud (2011)
FASEB J 25, 219-231
   Abstract »    Full Text »    PDF »
Glucose homeostasis in rainbow trout fed a high-carbohydrate diet: metformin and insulin interact in a tissue-dependent manner.
S. Polakof, T. W. Moon, P. Aguirre, S. Skiba-Cassy, and S. Panserat (2011)
Am J Physiol Regulatory Integrative Comp Physiol 300, R166-R174
   Abstract »    Full Text »    PDF »
The Triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic-acid Methyl Ester Has Potent Anti-diabetic Effects in Diet-induced Diabetic Mice and Leprdb/db Mice.
P. K. Saha, V. T. Reddy, M. Konopleva, M. Andreeff, and L. Chan (2010)
J. Biol. Chem. 285, 40581-40592
   Abstract »    Full Text »    PDF »
AMPK-dependent Repression of Hepatic Gluconeogenesis via Disruption of CREB{middle dot}CRTC2 Complex by Orphan Nuclear Receptor Small Heterodimer Partner.
J.-M. Lee, W.-Y. Seo, K.-H. Song, D. Chanda, Y. D. Kim, D.-K. Kim, M.-W. Lee, D. Ryu, Y.-H. Kim, J.-R. Noh, et al. (2010)
J. Biol. Chem. 285, 32182-32191
   Abstract »    Full Text »    PDF »
Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1.
D. Fu, Y. Wakabayashi, Y. Ido, J. Lippincott-Schwartz, and I. M. Arias (2010)
J. Cell Sci. 123, 3294-3302
   Abstract »    Full Text »    PDF »
Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation.
D. Bungard, B. J. Fuerth, P.-Y. Zeng, B. Faubert, N. L. Maas, B. Viollet, D. Carling, C. B. Thompson, R. G. Jones, and S. L. Berger (2010)
Science 329, 1201-1205
   Abstract »    Full Text »    PDF »
Metformin Prevents Tobacco Carcinogen-Induced Lung Tumorigenesis.
R. M. Memmott, J. R. Mercado, C. R. Maier, S. Kawabata, S. D. Fox, and P. A. Dennis (2010)
Cancer Prevention Research 3, 1066-1076
   Abstract »    Full Text »    PDF »
Metformin and Other Biguanides in Oncology: Advancing the Research Agenda.
M. Pollak (2010)
Cancer Prevention Research 3, 1060-1065
   Abstract »    Full Text »    PDF »
Metformin Suppresses Colorectal Aberrant Crypt Foci in a Short-term Clinical Trial.
K. Hosono, H. Endo, H. Takahashi, M. Sugiyama, E. Sakai, T. Uchiyama, K. Suzuki, H. Iida, Y. Sakamoto, K. Yoneda, et al. (2010)
Cancer Prevention Research 3, 1077-1083
   Abstract »    Full Text »    PDF »
Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle.
H.-J. Koh, T. Toyoda, N. Fujii, M. M. Jung, A. Rathod, R. J.-W. Middelbeek, S. J. Lessard, J. T. Treebak, K. Tsuchihara, H. Esumi, et al. (2010)
PNAS 107, 15541-15546
   Abstract »    Full Text »    PDF »
LKB1 Deficiency in Tie2-Cre-expressing Cells Impairs Ischemia-induced Angiogenesis.
K. Ohashi, N. Ouchi, A. Higuchi, R. J. Shaw, and K. Walsh (2010)
J. Biol. Chem. 285, 22291-22298
   Abstract »    Full Text »    PDF »
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1{alpha} pathway.
M. D. L. Chau, J. Gao, Q. Yang, Z. Wu, and J. Gromada (2010)
PNAS 107, 12553-12558
   Abstract »    Full Text »    PDF »
Diabetes and Cancer: A consensus report.
E. Giovannucci, D. M. Harlan, M. C. Archer, R. M. Bergenstal, S. M. Gapstur, L. A. Habel, M. Pollak, J. G. Regensteiner, and D. Yee (2010)
Diabetes Care 33, 1674-1685
   Full Text »    PDF »
A Single Nucleotide Polymorphism in STK11 Influences Insulin Sensitivity and Metformin Efficacy in Hyperinsulinemic Girls With Androgen Excess.
A. Lopez-Bermejo, M. Diaz, E. Moran, F. de Zegher, and L. Ibanez (2010)
Diabetes Care 33, 1544-1548
   Abstract »    Full Text »    PDF »
Role of KLF15 in Regulation of Hepatic Gluconeogenesis and Metformin Action.
M. Takashima, W. Ogawa, K. Hayashi, H. Inoue, S. Kinoshita, Y. Okamoto, H. Sakaue, Y. Wataoka, A. Emi, Y. Senga, et al. (2010)
Diabetes 59, 1608-1615
   Abstract »    Full Text »    PDF »
Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase.
J. Mankouri, P. R. Tedbury, S. Gretton, M. E. Hughes, S. D. C. Griffin, M. L. Dallas, K. A. Green, D. G. Hardie, C. Peers, and M. Harris (2010)
PNAS 107, 11549-11554
   Abstract »    Full Text »    PDF »
Metformin in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug?.
I. Ben Sahra, Y. Le Marchand-Brustel, J.-F. Tanti, and F. Bost (2010)
Mol. Cancer Ther. 9, 1092-1099
   Abstract »    Full Text »    PDF »
Crosstalk between Insulin/Insulin-like Growth Factor-1 Receptors and G Protein-Coupled Receptor Signaling Systems: A Novel Target for the Antidiabetic Drug Metformin in Pancreatic Cancer.
E. Rozengurt, J. Sinnett-Smith, and K. Kisfalvi (2010)
Clin. Cancer Res. 16, 2505-2511
   Abstract »    Full Text »    PDF »
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5.
P. W Caton, N. K Nayuni, J. Kieswich, N. Q Khan, M. M Yaqoob, and R. Corder (2010)
J. Endocrinol. 205, 97-106
   Abstract »    Full Text »    PDF »
Potent and Specific Inhibition of mMate1-Mediated Efflux of Type I Organic Cations in the Liver and Kidney by Pyrimethamine.
S. Ito, H. Kusuhara, Y. Kuroiwa, C. Wu, Y. Moriyama, K. Inoue, T. Kondo, H. Yuasa, H. Nakayama, S. Horita, et al. (2010)
J. Pharmacol. Exp. Ther. 333, 341-350
   Abstract »    Full Text »    PDF »
AMPK and SIRT1: a long-standing partnership?.
N. B. Ruderman, X. Julia Xu, L. Nelson, J. M. Cacicedo, A. K. Saha, F. Lan, and Y. Ido (2010)
Am J Physiol Endocrinol Metab 298, E751-E760
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882