Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 310 (5756): 1957-1960

Copyright © 2005 by the American Association for the Advancement of Science

fgf20 Is Essential for Initiating Zebrafish Fin Regeneration

Geoffrey G. Whitehead, Shinji Makino, Ching-Ling Lien, Mark T. Keating*

Abstract: Epimorphic regeneration requires the presence or creation of pluripotent cells capable of reproducing lost organs. Zebrafish fin regeneration is mediated by the creation of blastema cells. Here, we characterize the devoid of blastema (dob) mutant that fails fin regeneration during initial steps, forms abnormal regeneration epithelium, and does not form blastema. This mutation has no impact on embryonic survival. Dob results from an fgf20a null mutation, Y148S. Fgf20a is expressed during initiation of fin regeneration at the epithelial-mesenchymal boundary and later overlaps with the blastema marker msxb. Thus, fgf20a has a regeneration-specific requirement, initiating fin regeneration, and controlling blastema formation.

Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Department of Cardiology, Children's Hospital, Boston, MA 02115, USA.

* To whom correspondence should be addressed. E-mail: mark.keating{at}

Notch Prosensory Effects in the Mammalian Cochlea Are Partially Mediated by Fgf20.
V. Munnamalai, T. Hayashi, and O. Bermingham-McDonogh (2012)
J. Neurosci. 32, 12876-12884
   Abstract »    Full Text »    PDF »
Life-long preservation of the regenerative capacity in the fin and heart in zebrafish.
J. Itou, H. Kawakami, T. Burgoyne, and Y. Kawakami (2012)
Biology Open 1, 739-746
   Abstract »    Full Text »    PDF »
A molecular wound response program associated with regeneration initiation in planarians.
D. Wenemoser, S. W. Lapan, A. W. Wilkinson, G. W. Bell, and P. W. Reddien (2012)
Genes & Dev. 26, 988-1002
   Abstract »    Full Text »    PDF »
Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration.
N. Blum and G. Begemann (2012)
Development 139, 107-116
   Abstract »    Full Text »    PDF »
Brain Regeneration in Physiology and Pathology: The Immune Signature Driving Therapeutic Plasticity of Neural Stem Cells.
G. Martino, S. Pluchino, L. Bonfanti, and M. Schwartz (2011)
Physiol Rev 91, 1281-1304
   Abstract »    Full Text »    PDF »
Regenerative phenotype in mice with a point mutation in transforming growth factor {beta} type I receptor (TGFBR1).
J. Liu, K. Johnson, J. Li, V. Piamonte, B. M. Steffy, M. H. Hsieh, N. Ng, J. Zhang, J. R. Walker, S. Ding, et al. (2011)
PNAS 108, 14560-14565
   Abstract »    Full Text »    PDF »
Mature and Juvenile Tissue Models of Regeneration in Small Fish Species.
N. Yoshinari and A. Kawakami (2011)
Biol. Bull. 221, 62-78
   Abstract »    Full Text »    PDF »
Dehydro-{alpha}-lapachone, a plant product with antivascular activity.
I. Garkavtsev, V. P. Chauhan, H. K. Wong, A. Mukhopadhyay, M. A. Glicksman, R. T. Peterson, and R. K. Jain (2011)
PNAS 108, 11596-11601
   Abstract »    Full Text »    PDF »
IGF signaling between blastema and wound epidermis is required for fin regeneration.
F. Chablais and A. Jazwinska (2010)
Development 137, 871-879
   Abstract »    Full Text »    PDF »
Comparative Expression Profiling Reveals an Essential Role for Raldh2 in Epimorphic Regeneration.
L. K. Mathew, S. Sengupta, J. A. Franzosa, J. Perry, J. La Du, E. A. Andreasen, and R. L. Tanguay (2009)
J. Biol. Chem. 284, 33642-33653
   Abstract »    Full Text »    PDF »
A histone demethylase is necessary for regeneration in zebrafish.
S. Stewart, Z.-Y. Tsun, and J. C. I. Belmonte (2009)
PNAS 106, 19889-19894
   Abstract »    Full Text »    PDF »
A wound-induced Wnt expression program controls planarian regeneration polarity.
C. P. Petersen and P. W. Reddien (2009)
PNAS 106, 17061-17066
   Abstract »    Full Text »    PDF »
Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy.
N. G. Kan, D. Junghans, and J. C. I. Belmonte (2009)
FASEB J 23, 3516-3525
   Abstract »    Full Text »    PDF »
Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix.
J. Kalinina, S. A. Byron, H. P. Makarenkova, S. K. Olsen, A. V. Eliseenkova, W. J. Larochelle, M. Dhanabal, S. Blais, D. M. Ornitz, L. A. Day, et al. (2009)
Mol. Cell. Biol. 29, 4663-4678
   Abstract »    Full Text »    PDF »
Suppression of the immune response potentiates tadpole tail regeneration during the refractory period.
T. Fukazawa, Y. Naora, T. Kunieda, and T. Kubo (2009)
Development 136, 2323-2327
   Abstract »    Full Text »    PDF »
Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish.
Z. Qin, L. K. Barthel, and P. A. Raymond (2009)
PNAS 106, 9310-9315
   Abstract »    Full Text »    PDF »
Fgfs control homeostatic regeneration in adult zebrafish fins.
A. A. Wills, A. R. Kidd III, A. Lepilina, and K. D. Poss (2008)
Development 135, 3063-3070
   Abstract »    Full Text »    PDF »
Zebrafish (Danio rerio) as a model for studying the genetic basis of copper toxicity, deficiency, and metabolism.
P. P Hernandez and M. L Allende (2008)
Am J Clin Nutr 88, 835S-839S
   Abstract »    Full Text »    PDF »
Micromanaging regeneration.
E. M. Tanaka and G. Weidinger (2008)
Genes & Dev. 22, 700-705
   Full Text »    PDF »
Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish.
V. P. Yin, J. M. Thomson, R. Thummel, D. R. Hyde, S. M. Hammond, and K. D. Poss (2008)
Genes & Dev. 22, 728-733
   Abstract »    Full Text »    PDF »
Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine.
C. L. Stoick-Cooper, R. T. Moon, and G. Weidinger (2007)
Genes & Dev. 21, 1292-1315
   Abstract »    Full Text »    PDF »
Distinct Wnt signaling pathways have opposing roles in appendage regeneration.
C. L. Stoick-Cooper, G. Weidinger, K. J. Riehle, C. Hubbert, M. B. Major, N. Fausto, and R. T. Moon (2007)
Development 134, 479-489
   Abstract »    Full Text »    PDF »
Wnt/beta-catenin signaling regulates vertebrate limb regeneration.
Y. Kawakami, C. Rodriguez Esteban, M. Raya, H. Kawakami, M. Marti, I. Dubova, and J. C. Izpisua Belmonte (2006)
Genes & Dev. 20, 3232-3237
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882