Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5757): 94-98

Copyright © 2006 by the American Association for the Advancement of Science

Cytokinin Signaling and Its Inhibitor AHP6 Regulate Cell Fate During Vascular Development

Ari Pekka Mähönen,1 Anthony Bishopp,1* Masayuki Higuchi,2* Kaisa M. Nieminen,1 Kaori Kinoshita,2 Kirsi Törmäkangas,1 Yoshihisa Ikeda,3 Atsuhiro Oka,4 Tatsuo Kakimoto,2{dagger} Ykä Helariutta1,5,6{dagger}

Abstract: The cell lineages that form the transporting tissues (xylem and phloem) and the intervening pluripotent procambial tissue originate from stem cells near the root tip. We demonstrate that in Arabidopsis, cytokinin phytohormones negatively regulate protoxylem specification. AHP6, an inhibitory pseudophosphotransfer protein, counteracts cytokinin signaling, allowing protoxylem formation. Conversely, cytokinin signaling negatively regulates the spatial domain of AHP6 expression. Thus, by controlling the identity of cell lineages, the reciprocal interaction of cytokinin signaling and its spatially specific modulator regulates proliferation and differentiation of cell lineages during vascular development, demonstrating a previously unrecognized regulatory circuit underlying meristem organization.

1 Plant Molecular Biology Laboratory, Institute of Biotechnology, POB 56, FI-00014, University of Helsinki, Finland.
2 Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
3 Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021, USA.
4 Laboratory of Molecular Biology, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.
5 Department of Biology, FI-20014, University of Turku, Finland.
6 Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: kakimoto{at}bio.sci.osaka-u.ac.jp (T.K.); yhelariu{at}operoni.helsinki.fi (Y.H.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Engineering key components in a synthetic eukaryotic signal transduction pathway.
M. S. Antunes, K. J. Morey, N. Tewari-Singh, T. A. Bowen, J. J. Smith, C. T. Webb, H. W. Hellinga, and J. I. Medford (2014)
Mol Syst Biol 5, 270
   Abstract »    Full Text »    PDF »
Genome-Wide Identification, Phylogeny, Duplication, and Expression Analyses of Two-Component System Genes in Chinese Cabbage (Brassica rapa ssp. pekinensis).
Z. Liu, M. Zhang, L. Kong, Y. Lv, M. Zou, G. Lu, J. Cao, and X. Yu (2014)
DNA Res
   Abstract »    Full Text »    PDF »
Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots.
D. Muraro, N. Mellor, M. P. Pound, H. Help, M. Lucas, J. Chopard, H. M. Byrne, C. Godin, T. C. Hodgman, J. R. King, et al. (2014)
PNAS 111, 857-862
   Abstract »    Full Text »    PDF »
Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes.
L. Chang, E. Ramireddy, and T. Schmulling (2013)
J. Exp. Bot. 64, 5021-5032
   Abstract »    Full Text »    PDF »
The Arabidopsis Eukaryotic Translation Initiation Factor eIF5A-2 Regulates Root Protoxylem Development by Modulating Cytokinin Signaling.
B. Ren, Q. Chen, S. Hong, W. Zhao, J. Feng, H. Feng, and J. Zuo (2013)
PLANT CELL 25, 3841-3857
   Abstract »    Full Text »    PDF »
Adenine Phosphoribosyl Transferase 1 is a Key Enzyme Catalyzing Cytokinin Conversion from Nucleobases to Nucleotides in Arabidopsis.
X. Zhang, Y. Chen, X. Lin, X. Hong, Y. Zhu, W. Li, W. He, F. An, and H. Guo (2013)
Mol Plant 6, 1661-1672
   Abstract »    Full Text »    PDF »
Structure-Function Analysis of Arabidopsis thaliana Histidine Kinase AHK5 Bound to Its Cognate Phosphotransfer Protein AHP1.
J. Bauer, K. Reiss, M. Veerabagu, M. Heunemann, K. Harter, and T. Stehle (2013)
Mol Plant 6, 959-970
   Abstract »    Full Text »    PDF »
Functional Characterization of Type-B Response Regulators in the Arabidopsis Cytokinin Response.
K. Hill, D. E. Mathews, H. J. Kim, I. H. Street, S. L. Wildes, Y.-H. Chiang, M. G. Mason, J. M. Alonso, J. R. Ecker, J. J. Kieber, et al. (2013)
Plant Physiology 162, 212-224
   Abstract »    Full Text »    PDF »
Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3.
S. Depuydt, A. Rodriguez-Villalon, L. Santuari, C. Wyser-Rmili, L. Ragni, and C. S. Hardtke (2013)
PNAS 110, 7074-7079
   Abstract »    Full Text »    PDF »
Crossing paths: cytokinin signalling and crosstalk.
S. El-Showk, R. Ruonala, and Y. Helariutta (2013)
Development 140, 1373-1383
   Abstract »    Full Text »    PDF »
Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response.
R. Nishiyama, Y. Watanabe, M. A. Leyva-Gonzalez, C. Van Ha, Y. Fujita, M. Tanaka, M. Seki, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella, et al. (2013)
PNAS 110, 4840-4845
   Abstract »    Full Text »    PDF »
Auxin Regulation of Embryonic Root Formation.
S. Yoshida, S. Saiga, and D. Weijers (2013)
Plant Cell Physiol. 54, 325-332
   Abstract »    Full Text »    PDF »
An Atypical bHLH Transcription Factor Regulates Early Xylem Development Downstream of Auxin.
K. Ohashi-Ito, M. Matsukawa, and H. Fukuda (2013)
Plant Cell Physiol. 54, 398-405
   Abstract »    Full Text »    PDF »
Nomenclature for Members of the Two-Component Signaling Pathway of Plants.
A. Heyl, M. Brault, F. Frugier, A. Kuderova, A.-C. Lindner, V. Motyka, A. M. Rashotte, K. V. Schwartzenberg, R. Vankova, and G. E. Schaller (2013)
Plant Physiology 161, 1063-1065
   Full Text »    PDF »
A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta.
E. Zurcher, D. Tavor-Deslex, D. Lituiev, K. Enkerli, P. T. Tarr, and B. Muller (2013)
Plant Physiology 161, 1066-1075
   Abstract »    Full Text »    PDF »
Stem cell function during plant vascular development.
S. Miyashima, J. Sebastian, J.-Y. Lee, and Y. Helariutta (2013)
EMBO J. 32, 178-193
   Abstract »    Full Text »    PDF »
Cell-to-Cell Movement of Two Interacting AT-Hook Factors in Arabidopsis Root Vascular Tissue Patterning.
J. Zhou, X. Wang, J.-Y. Lee, and J.-Y. Lee (2013)
PLANT CELL 25, 187-201
   Abstract »    Full Text »    PDF »
Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling.
J. Jeon and J. Kim (2013)
Plant Physiology 161, 408-424
   Abstract »    Full Text »    PDF »
Manipulation of plant architecture to enhance lignocellulosic biomass.
P. Stamm, V. Verma, R. Ramamoorthy, and P. P. Kumar (2012)
AoB Plants 2012, pls026
   Abstract »    Full Text »    PDF »
Systems Analysis of Shoot Apical Meristem Growth and Development: Integrating Hormonal and Mechanical Signaling.
J. A. H. Murray, A. Jones, C. Godin, and J. Traas (2012)
PLANT CELL 24, 3907-3919
   Abstract »    Full Text »    PDF »
Agrobacterium tumefaciens Tumor Morphology Root Plastid Localization and Preferential Usage of Hydroxylated Prenyl Donor Is Important for Efficient Gall Formation.
N. Ueda, M. Kojima, K. Suzuki, and H. Sakakibara (2012)
Plant Physiology 159, 1064-1072
   Abstract »    Full Text »    PDF »
Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin.
S. Naseer, Y. Lee, C. Lapierre, R. Franke, C. Nawrath, and N. Geldner (2012)
PNAS 109, 10101-10106
   Abstract »    Full Text »    PDF »
In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis.
B. Parizot, I. Roberts, J. Raes, T. Beeckman, and I. De Smet (2012)
Phil Trans R Soc B 367, 1479-1488
   Abstract »    Full Text »    PDF »
A Chemical Biology Approach Reveals an Opposite Action between Thermospermine and Auxin in Xylem Development in Arabidopsis thaliana.
K. Yoshimoto, Y. Noutoshi, K.-i. Hayashi, K. Shirasu, T. Takahashi, and H. Motose (2012)
Plant Cell Physiol. 53, 635-645
   Abstract »    Full Text »    PDF »
Characterization of Genes Involved in Cytokinin Signaling and Metabolism from Rice.
Y.-C. Tsai, N. R. Weir, K. Hill, W. Zhang, H. J. Kim, S.-H. Shiu, G. E. Schaller, and J. J. Kieber (2012)
Plant Physiology 158, 1666-1684
   Abstract »    Full Text »    PDF »
Measuring cell identity in noisy biological systems.
K. D. Birnbaum and E. Kussell (2011)
Nucleic Acids Res. 39, 9093-9107
   Abstract »    Full Text »    PDF »
Genome-Wide Direct Target Analysis Reveals a Role for SHORT-ROOT in Root Vascular Patterning through Cytokinin Homeostasis.
H. Cui, Y. Hao, M. Kovtun, V. Stolc, X.-W. Deng, H. Sakakibara, and M. Kojima (2011)
Plant Physiology 157, 1221-1231
   Abstract »    Full Text »    PDF »
Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root.
S. Miyashima, S. Koi, T. Hashimoto, and K. Nakajima (2011)
Development 138, 2303-2313
   Abstract »    Full Text »    PDF »
Generic signal-specific responses: cytokinin and context-dependent cellular responses.
B. Muller (2011)
J. Exp. Bot. 62, 3273-3288
   Abstract »    Full Text »    PDF »
Differential spatial expression of A- and B-type CDKs, and distribution of auxins and cytokinins in the open transverse root apical meristem of Cucurbita maxima.
A. Chiappetta, L. Bruno, A. Salimonti, A. Muto, J. Jones, H. J. Rogers, D. Francis, and M. B. Bitonti (2011)
Ann. Bot. 107, 1223-1234
   Abstract »    Full Text »    PDF »
The CKH2/PKL Chromatin Remodeling Factor Negatively Regulates Cytokinin Responses in Arabidopsis Calli.
K. Furuta, M. Kubo, K. Sano, T. Demura, H. Fukuda, Y.-G. Liu, D. Shibata, and T. Kakimoto (2011)
Plant Cell Physiol. 52, 618-628
   Abstract »    Full Text »    PDF »
The CKH1/EER4 Gene Encoding a TAF12-Like Protein Negatively Regulates Cytokinin Sensitivity in Arabidopsis thaliana.
M. Kubo, K. Furuta, T. Demura, H. Fukuda, Y.-G. Liu, D. Shibata, and T. Kakimoto (2011)
Plant Cell Physiol. 52, 629-637
   Abstract »    Full Text »    PDF »
Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion.
L. Ragni, K. Nieminen, D. Pacheco-Villalobos, R. Sibout, C. Schwechheimer, and C. S. Hardtke (2011)
PLANT CELL 23, 1322-1336
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana Checkpoint Kinase WEE1 Protects against Premature Vascular Differentiation during Replication Stress.
T. Cools, A. Iantcheva, A. K. Weimer, S. Boens, N. Takahashi, S. Maes, H. Van den Daele, G. Van Isterdael, A. Schnittger, and L. De Veylder (2011)
PLANT CELL 23, 1435-1448
   Abstract »    Full Text »    PDF »
CLE Peptides can Negatively Regulate Protoxylem Vessel Formation via Cytokinin Signaling.
Y. Kondo, Y. Hirakawa, J. J. Kieber, and H. Fukuda (2011)
Plant Cell Physiol. 52, 37-48
   Abstract »    Full Text »    PDF »
Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana.
I. Bartrina, E. Otto, M. Strnad, T. Werner, and T. Schmulling (2011)
PLANT CELL 23, 69-80
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of Two-Component Systems and Prediction of Stress-Responsive Two-Component System Members in Soybean.
K. Mochida, T. Yoshida, T. Sakurai, K. Yamaguchi-Shinozaki, K. Shinozaki, and L.-S. P. Tran (2010)
DNA Res 17, 303-324
   Abstract »    Full Text »    PDF »
Cytokinin Regulates Compound Leaf Development in Tomato.
E. Shani, H. Ben-Gera, S. Shleizer-Burko, Y. Burko, D. Weiss, and N. Ori (2010)
PLANT CELL 22, 3206-3217
   Abstract »    Full Text »    PDF »
A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis.
J. Jeon, N. Y. Kim, S. Kim, N. Y. Kang, O. Novak, S.-J. Ku, C. Cho, D. J. Lee, E.-J. Lee, M. Strnad, et al. (2010)
J. Biol. Chem. 285, 23371-23386
   Abstract »    Full Text »    PDF »
VND-INTERACTING2, a NAC Domain Transcription Factor, Negatively Regulates Xylem Vessel Formation in Arabidopsis.
M. Yamaguchi, M. Ohtani, N. Mitsuda, M. Kubo, M. Ohme-Takagi, H. Fukuda, and T. Demura (2010)
PLANT CELL 22, 1249-1263
   Abstract »    Full Text »    PDF »
Arabidopsis Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth.
Y. Deng, H. Dong, J. Mu, B. Ren, B. Zheng, Z. Ji, W.-C. Yang, Y. Liang, and J. Zuo (2010)
PLANT CELL 22, 1232-1248
   Abstract »    Full Text »    PDF »
Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis.
T. Kuroha, H. Tokunaga, M. Kojima, N. Ueda, T. Ishida, S. Nagawa, H. Fukuda, K. Sugimoto, and H. Sakakibara (2009)
PLANT CELL 21, 3152-3169
   Abstract »    Full Text »    PDF »
A Genome-Wide Compilation of the Two-Component Systems in Lotus japonicus.
K. Ishida, Y. Niwa, T. Yamashino, and T. Mizuno (2009)
DNA Res 16, 237-247
   Abstract »    Full Text »    PDF »
The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots.
J. Hejatko, H. Ryu, G.-T. Kim, R. Dobesova, S. Choi, S. M. Choi, P. Soucek, J. Horak, B. Pekarova, K. Palme, et al. (2009)
PLANT CELL 21, 2008-2021
   Abstract »    Full Text »    PDF »
Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux.
M. Pernisova, P. Klima, J. Horak, M. Valkova, J. Malbeck, P. Soucek, P. Reichman, K. Hoyerova, J. Dubova, J. Friml, et al. (2009)
PNAS 106, 3609-3614
   Abstract »    Full Text »    PDF »
Cytokinin signaling regulates cambial development in poplar.
K. Nieminen, J. Immanen, M. Laxell, L. Kauppinen, P. Tarkowski, K. Dolezal, S. Tahtiharju, A. Elo, M. Decourteix, K. Ljung, et al. (2008)
PNAS 105, 20032-20037
   Abstract »    Full Text »    PDF »
ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 Regulate Tracheary Element Differentiation in Arabidopsis.
T. Soyano, S. Thitamadee, Y. Machida, and N.-H. Chua (2008)
PLANT CELL 20, 3359-3373
   Abstract »    Full Text »    PDF »
Type B Response Regulators of Arabidopsis Play Key Roles in Cytokinin Signaling and Plant Development.
R. D. Argyros, D. E. Mathews, Y.-H. Chiang, C. M. Palmer, D. M. Thibault, N. Etheridge, D. A. Argyros, M. G. Mason, J. J. Kieber, and G. E. Schaller (2008)
PLANT CELL 20, 2102-2116
   Abstract »    Full Text »    PDF »
ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death.
L. Muniz, E. G. Minguet, S. K. Singh, E. Pesquet, F. Vera-Sirera, C. L. Moreau-Courtois, J. Carbonell, M. A. Blazquez, and H. Tuominen (2008)
Development 135, 2573-2582
   Abstract »    Full Text »    PDF »
The Root Cap Determines Ethylene-Dependent Growth and Development in Maize Roots.
A. Hahn, R. Zimmermann, D. Wanke, K. Harter, and H. G. Edelmann (2008)
Mol Plant 1, 359-367
   Abstract »    Full Text »    PDF »
Three Type-B Response Regulators, ARR1, ARR10 and ARR12, Play Essential but Redundant Roles in Cytokinin Signal Transduction Throughout the Life Cycle of Arabidopsis thaliana.
K. Ishida, T. Yamashino, A. Yokoyama, and T. Mizuno (2008)
Plant Cell Physiol. 49, 47-57
   Abstract »    Full Text »    PDF »
Diarch Symmetry of the Vascular Bundle in Arabidopsis Root Encompasses the Pericycle and Is Reflected in Distich Lateral Root Initiation.
B. Parizot, L. Laplaze, L. Ricaud, E. Boucheron-Dubuisson, V. Bayle, M. Bonke, I. De Smet, S. R. Poethig, Y. Helariutta, J. Haseloff, et al. (2008)
Plant Physiology 146, 140-148
   Abstract »    Full Text »    PDF »
Cytokinin Regulates Type-A Arabidopsis Response Regulator Activity and Protein Stability via Two-Component Phosphorelay.
J. P.C. To, J. Deruere, B. B. Maxwell, V. F. Morris, C. E. Hutchison, F. J. Ferreira, G. E. Schaller, and J. J. Kieber (2007)
PLANT CELL 19, 3901-3914
   Abstract »    Full Text »    PDF »
Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation.
L. Laplaze, E. Benkova, I. Casimiro, L. Maes, S. Vanneste, R. Swarup, D. Weijers, V. Calvo, B. Parizot, M. B. Herrera-Rodriguez, et al. (2007)
PLANT CELL 19, 3889-3900
   Abstract »    Full Text »    PDF »
Cytokinin Receptors Are Involved in Alkamide Regulation of Root and Shoot Development in Arabidopsis.
J. Lopez-Bucio, M. Millan-Godinez, A. Mendez-Bravo, A. Morquecho-Contreras, E. Ramirez-Chavez, J. Molina-Torres, A. Perez-Torres, M. Higuchi, T. Kakimoto, and L. Herrera-Estrella (2007)
Plant Physiology 145, 1703-1713
   Abstract »    Full Text »    PDF »
Involvement of hormones and KNOXI genes in early Arabidopsis seedling development.
P. Soucek, P. Klima, A. Rekova, and B. Brzobohaty (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Advances in Cytokinin Signaling.
B. Muller and J. Sheen (2007)
Science 318, 68-69
   Abstract »    Full Text »    PDF »
Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY.
K. Ohashi-Ito and D. C. Bergmann (2007)
Development 134, 2959-2968
   Abstract »    Full Text »    PDF »
The SERK1 gene is expressed in procambium and immature vascular cells.
M. A. C. J. Kwaaitaal and S. C. de Vries (2007)
J. Exp. Bot. 58, 2887-2896
   Abstract »    Full Text »    PDF »
Abnormal Root and Nodule Vasculature in R50 (sym16), a Pea Nodulation Mutant which Accumulates Cytokinins.
A. N. Pepper, A. P. Morse, and F. C. Guinel (2007)
Ann. Bot. 99, 765-776
   Abstract »    Full Text »    PDF »
Overexpression of a Type-A Response Regulator Alters Rice Morphology and Cytokinin Metabolism.
N. Hirose, N. Makita, M. Kojima, T. Kamada-Nobusada, and H. Sakakibara (2007)
Plant Cell Physiol. 48, 523-539
   Abstract »    Full Text »    PDF »
Type-B ARR Transcription Factors, ARR10 and ARR12, are Implicated in Cytokinin-Mediated Regulation of Protoxylem Differentiation in Roots of Arabidopsis thaliana.
A. Yokoyama, T. Yamashino, Y.-I. Amano, Y. Tajima, A. Imamura, H. Sakakibara, and T. Mizuno (2007)
Plant Cell Physiol. 48, 84-96
   Abstract »    Full Text »    PDF »
The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis Regulates CUP-SHAPED COTYLEDON 1 at the Transcriptional Level and Controls Cotyledon Development.
Y. Ikeda, H. Banno, Q.-W. Niu, S. H. Howell, and N.-H. Chua (2006)
Plant Cell Physiol. 47, 1443-1456
   Abstract »    Full Text »    PDF »
The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling.
C. E. Hutchison, J. Li, C. Argueso, M. Gonzalez, E. Lee, M. W. Lewis, B. B. Maxwell, T. D. Perdue, G. E. Schaller, J. M. Alonso, et al. (2006)
PLANT CELL 18, 3073-3087
   Abstract »    Full Text »    PDF »
Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis.
K. Miyawaki, P. Tarkowski, M. Matsumoto-Kitano, T. Kato, S. Sato, D. Tarkowska, S. Tabata, G. Sandberg, and T. Kakimoto (2006)
PNAS 103, 16598-16603
   Abstract »    Full Text »    PDF »
Galactoglucomannans Increase Cell Population Density and Alter the Protoxylem/Metaxylem Tracheary Element Ratio in Xylogenic Cultures of Zinnia.
A. Benova-Kakosova, C. Digonnet, F. Goubet, P. Ranocha, A. Jauneau, E. Pesquet, O. Barbier, Z. Zhang, P. Capek, P. Dupree, et al. (2006)
Plant Physiology 142, 696-709
   Abstract »    Full Text »    PDF »
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)..
G. A. Tuskan, S. DiFazio, S. Jansson, J. Bohlmann, I. Grigoriev, U. Hellsten, N. Putnam, S. Ralph, S. Rombauts, A. Salamov, et al. (2006)
Science 313, 1596-1604
   Abstract »    Full Text »    PDF »
Signs of change: hormone receptors that regulate plant development..
A. Bishopp, A. P. Mahonen, and Y. Helariutta (2006)
Development 133, 1857-1869
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882