Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5759): 385-388

Copyright © 2006 by the American Association for the Advancement of Science

A Molecular Framework for Plant Regeneration

Jian Xu,1 Hugo Hofhuis,1 Renze Heidstra,1 Michael Sauer,2 Jirí Friml,2 Ben Scheres1*

Abstract: Plants and some animals have a profound capacity to regenerate organs from adult tissues. Molecular mechanisms for regeneration have, however, been largely unexplored. Here we investigate a local regeneration response in Arabidopsis roots. Laser-induced wounding disrupts the flow of auxin—a cell-fate–instructive plant hormone—in root tips, and we demonstrate that resulting cell-fate changes require the PLETHORA, SHORTROOT, and SCARECROW transcription factors. These transcription factors regulate the expression and polar position of PIN auxin efflux–facilitating membrane proteins to reconstitute auxin transport in renewed root tips.

Thus, a regeneration mechanism using embryonic root stem-cell patterning factors first responds to and subsequently stabilizes a new hormone distribution.

1 Department of Molecular Genetics, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
2 Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany.

* To whom correspondence should be addressed. E-mail: b.scheres{at}bio.uu.nl


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis.
J. Guo, J. Wei, J. Xu, and M.-X. Sun (2014)
J. Exp. Bot. 65, 1165-1179
   Abstract »    Full Text »    PDF »
WOX5-IAA17 Feedback Circuit-Mediated Cellular Auxin Response Is Crucial for the Patterning of Root Stem Cell Niches in Arabidopsis.
H. Tian, K. Wabnik, T. Niu, H. Li, Q. Yu, S. Pollmann, S. Vanneste, W. Govaerts, J. Rolcik, M. Geisler, et al. (2014)
Mol Plant 7, 277-289
   Abstract »    Full Text »    PDF »
MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation.
M. Furutani, Y. Nakano, and M. Tasaka (2014)
PNAS 111, 1198-1203
   Abstract »    Full Text »    PDF »
TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis.
L.-W. Hong, D.-W. Yan, W.-C. Liu, H.-G. Chen, and Y.-T. Lu (2014)
J. Exp. Bot. 65, 275-286
   Abstract »    Full Text »    PDF »
Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning.
K. Koizumi and K. L. Gallagher (2013)
Development 140, 1292-1300
   Abstract »    Full Text »    PDF »
Rooting plant development.
B. Scheres (2013)
Development 140, 939-941
   Abstract »    Full Text »    PDF »
incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness.
D. Esteve-Bruna, J. M. Perez-Perez, M. R. Ponce, and J. L. Micol (2013)
Plant Physiology 161, 1303-1320
   Abstract »    Full Text »    PDF »
Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3.
Z. J. Cheng, L. Wang, W. Sun, Y. Zhang, C. Zhou, Y. H. Su, W. Li, T. T. Sun, X. Y. Zhao, X. G. Li, et al. (2013)
Plant Physiology 161, 240-251
   Abstract »    Full Text »    PDF »
Defence on demand: mechanisms behind optimal defence patterns.
S. Meldau, M. Erb, and I. T. Baldwin (2012)
Ann. Bot. 110, 1503-1514
   Abstract »    Full Text »    PDF »
Identification of IAA Transport Inhibitors Including Compounds Affecting Cellular PIN Trafficking by Two Chemical Screening Approaches Using Maize Coleoptile Systems.
T. Nishimura, N. Matano, T. Morishima, C. Kakinuma, K.-i. Hayashi, T. Komano, M. Kubo, M. Hasebe, H. Kasahara, Y. Kamiya, et al. (2012)
Plant Cell Physiol. 53, 1671-1682
   Abstract »    Full Text »    PDF »
COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis.
M. Sassi, Y. Lu, Y. Zhang, J. Wang, P. Dhonukshe, I. Blilou, M. Dai, J. Li, X. Gong, Y. Jaillais, et al. (2012)
Development 139, 3402-3412
   Abstract »    Full Text »    PDF »
Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance.
V. V. Mironova, N. A. Omelyanchuk, E. S. Novoselova, A. V. Doroshkov, F. V. Kazantsev, A. V. Kochetov, N. A. Kolchanov, E. Mjolsness, and V. A. Likhoshvai (2012)
Ann. Bot. 110, 349-360
   Abstract »    Full Text »    PDF »
OnGuard, a Computational Platform for Quantitative Kinetic Modeling of Guard Cell Physiology.
A. Hills, Z.-H. Chen, A. Amtmann, M. R. Blatt, and V. L. Lew (2012)
Plant Physiology 159, 1026-1042
   Abstract »    Full Text »    PDF »
Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants.
T. Uemura, H. Kim, C. Saito, K. Ebine, T. Ueda, P. Schulze-Lefert, and A. Nakano (2012)
PNAS 109, 1784-1789
   Abstract »    Full Text »    PDF »
Regulation of tissue repair in plants.
J. B. Reid and J. J. Ross (2011)
PNAS 108, 17241-17242
   Full Text »    PDF »
Distinct Cell-Autonomous Functions of RETINOBLASTOMA-RELATED in Arabidopsis Stem Cells Revealed by the Brother of Brainbow Clonal Analysis System.
G. Wachsman, R. Heidstra, and B. Scheres (2011)
PLANT CELL 23, 2581-2591
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
Context, Specificity, and Self-Organization in Auxin Response.
M. Del Bianco and S. Kepinski (2011)
Cold Spring Harb Perspect Biol 3, a001578
   Abstract »    Full Text »    PDF »
Particular Significance of SRD2-Dependent snRNA Accumulation in Polarized Pattern Generation during Lateral Root Development of Arabidopsis.
M. Ohtani, T. Demura, and M. Sugiyama (2010)
Plant Cell Physiol. 51, 2002-2012
   Abstract »    Full Text »    PDF »
Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling.
P. Dhonukshe, F. Huang, C. S. Galvan-Ampudia, A. P. Mahonen, J. Kleine-Vehn, J. Xu, A. Quint, K. Prasad, J. Friml, B. Scheres, et al. (2010)
Development 137, 3245-3255
   Abstract »    Full Text »    PDF »
Auxin regulates distal stem cell differentiation in Arabidopsis roots.
Z. Ding and J. Friml (2010)
PNAS 107, 12046-12051
   Abstract »    Full Text »    PDF »
Auxin Control of Root Development.
P. Overvoorde, H. Fukaki, and T. Beeckman (2010)
Cold Spring Harb Perspect Biol 2, a001537
   Abstract »    Full Text »    PDF »
A developmental framework for endodermal differentiation and polarity.
J. Alassimone, S. Naseer, and N. Geldner (2010)
PNAS 107, 5214-5219
   Abstract »    Full Text »    PDF »
Auxin Transporters--Why So Many?.
E. Zazimalova, A. S. Murphy, H. Yang, K. Hoyerova, and P. Hosek (2010)
Cold Spring Harb Perspect Biol 2, a001552
   Abstract »    Full Text »    PDF »
The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis.
C. S. Gillmor, M. Y. Park, M. R. Smith, R. Pepitone, R. A. Kerstetter, and R. S. Poethig (2010)
Development 137, 113-122
   Abstract »    Full Text »    PDF »
Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves.
T. J. Donner, I. Sherr, and E. Scarpella (2009)
Development 136, 3235-3246
   Abstract »    Full Text »    PDF »
NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root.
R. Tsugeki, F. A. Ditengou, Y. Sumi, W. Teale, K. Palme, and K. Okada (2009)
PLANT CELL 21, 3133-3151
   Abstract »    Full Text »    PDF »
Vacuolar SNAREs Function in the Formation of the Leaf Vascular Network by Regulating Auxin Distribution.
M. Shirakawa, H. Ueda, T. Shimada, C. Nishiyama, and I. Hara-Nishimura (2009)
Plant Cell Physiol. 50, 1319-1328
   Abstract »    Full Text »    PDF »
Ectopic expression of LEAFY COTYLEDON1-LIKE gene and localized auxin accumulation mark embryogenic competence in epiphyllous plants of Helianthus annuus x H. tuberosus.
A. Chiappetta, M. Fambrini, M. Petrarulo, F. Rapparini, V. Michelotti, L. Bruno, M. Greco, R. Baraldi, M. Salvini, C. Pugliesi, et al. (2009)
Ann. Bot. 103, 735-747
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in Arabidopsis thaliana.
J. Pan, S. Fujioka, J. Peng, J. Chen, G. Li, and R. Chen (2009)
PLANT CELL 21, 568-580
   Abstract »    Full Text »    PDF »
Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development.
J. Mravec, M. Kubes, A. Bielach, V. Gaykova, J. Petrasek, P. Skupa, S. Chand, E. Benkova, E. Zazimalova, and J. Friml (2008)
Development 135, 3345-3354
   Abstract »    Full Text »    PDF »
Determinate Root Growth and Meristem Maintenance in Angiosperms.
S. Shishkova, T. L. Rost, and J. G. Dubrovsky (2008)
Ann. Bot. 101, 319-340
   Abstract »    Full Text »    PDF »
The Subcellular Localization and Blue-Light-Induced Movement of Phototropin 1-GFP in Etiolated Seedlings of Arabidopsis thalianaw.
Y.-L. Wan, W. Eisinger, D. Ehrhardt, U. Kubitscheck, F. Baluska, and W. Briggs (2008)
Mol Plant 1, 103-117
   Abstract »    Full Text »    PDF »
Pattern formation during de novo assembly of the Arabidopsis shoot meristem.
S. P. Gordon, M. G. Heisler, G. V. Reddy, C. Ohno, P. Das, and E. M. Meyerowitz (2007)
Development 134, 3539-3548
   Abstract »    Full Text »    PDF »
The SERK1 gene is expressed in procambium and immature vascular cells.
M. A. C. J. Kwaaitaal and S. C. de Vries (2007)
J. Exp. Bot. 58, 2887-2896
   Abstract »    Full Text »    PDF »
TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture.
L. Conti and D. Bradley (2007)
PLANT CELL 19, 767-778
   Abstract »    Full Text »    PDF »
Factors involved in root formation in Medicago truncatula.
N. Imin, M. Nizamidin, T. Wu, and B. G. Rolfe (2007)
J. Exp. Bot. 58, 439-451
   Abstract »    Full Text »    PDF »
Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity..
M. Sauer, J. Balla, C. Luschnig, J. Wisniewska, V. Reinohl, J. Friml, and E. Benkova (2006)
Genes & Dev. 20, 2902-2911
   Abstract »    Full Text »    PDF »
ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis.
A. Hay, M. Barkoulas, and M. Tsiantis (2006)
Development 133, 3955-3961
   Abstract »    Full Text »    PDF »
Polar auxin transport and patterning: grow with the flow.
B. Scheres and J. Xu (2006)
Genes & Dev. 20, 922-926
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882