Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5761): 629-632

Copyright © 2006 by the American Association for the Advancement of Science

New Neurons Follow the Flow of Cerebrospinal Fluid in the Adult Brain

Kazunobu Sawamoto,1,4,5* Hynek Wichterle,3 Oscar Gonzalez-Perez,1 Jeremy A. Cholfin,1,2 Masayuki Yamada,6 Nathalie Spassky,1 Noel S. Murcia,7 Jose Manuel Garcia-Verdugo,8 Oscar Marin,9 John L. R. Rubenstein,2 Marc Tessier-Lavigne,10 Hideyuki Okano,5 Arturo Alvarez-Buylla1*

Abstract: In the adult brain, neuroblasts born in the subventricular zone migrate from the walls of the lateral ventricles to the olfactory bulb. How do these cells orient over such a long distance and through complex territories? Here we show that neuroblast migration parallels cerebrospinal fluid (CSF) flow. Beating of ependymal cilia is required for normal CSF flow, concentration gradient formation of CSF guidance molecules, and directional migration of neuroblasts. Results suggest that polarized epithelial cells contribute important vectorial information for guidance of young, migrating neurons.

1 Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, CA 94143, USA.
2 Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA.
3 Department of Pathology, Columbia University, New York, NY 10032, USA.
4 Bridgestone Laboratory of Developmental and Regenerative Neurobiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
5 Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
6 Central Institute for Experimental Animals, Kawasaki, Kanagawa 216-0001, Japan.
7 Rainbow Center for Childhood Polycystic Kidney Disease, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106–6003, USA.
8 University of Valencia, Burjassot-46100, Spain.
9 Instituto de Neurosciencias de Alicante of the Consejo Superior de Investigaciones Científicas (CSIC) and University Miguel Hernández, 03550 Sant Joan d'Alacant, Alicante, Spain.
10 Genentech, Inc., South San Francisco, CA 94080–4990, USA.

* To whom correspondence should be addressed. E-mail: sawamoto{at}sc.itc.keio.ac.jp (K.S.); abuylla{at}stemcell.ucsf.edu (A.A.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.
B. Siyahhan, V. Knobloch, D. de Zelicourt, M. Asgari, M. Schmid Daners, D. Poulikakos, and V. Kurtcuoglu (2014)
J R Soc Interface 11, 20131189
   Abstract »    Full Text »    PDF »
A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles.
P. Walentek, S. Bogusch, T. Thumberger, P. Vick, E. Dubaissi, T. Beyer, M. Blum, and A. Schweickert (2014)
Development 141, 1526-1533
   Abstract »    Full Text »    PDF »
Flagellar dynamics of a connected chain of active, polar, Brownian particles.
R. Chelakkot, A. Gopinath, L. Mahadevan, and M. F. Hagan (2014)
J R Soc Interface 11, 20130884
   Abstract »    Full Text »    PDF »
Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion.
A. N. Ziegler, S. Chidambaram, B. E. Forbes, T. L. Wood, and S. W. Levison (2014)
J. Biol. Chem. 289, 4626-4633
   Abstract »    Full Text »    PDF »
Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain.
F. J. Perez-Asensio, U. Perpina, A. M. Planas, and E. Pozas (2013)
J. Cell Sci. 126, 4208-4219
   Abstract »    Full Text »    PDF »
Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia.
M. Bosch Grau, G. Gonzalez Curto, C. Rocha, M. M. Magiera, P. Marques Sousa, T. Giordano, N. Spassky, and C. Janke (2013)
J. Cell Biol. 202, 441-451
   Abstract »    Full Text »    PDF »
Fascin Regulates the Migration of Subventricular Zone-Derived Neuroblasts in the Postnatal Brain.
M. Sonego, S. Gajendra, M. Parsons, Y. Ma, C. Hobbs, M. P. Zentar, G. Williams, L. M. Machesky, P. Doherty, and G. Lalli (2013)
J. Neurosci. 33, 12171-12185
   Abstract »    Full Text »    PDF »
The establishment of rotational polarity in the airway and ependymal cilia: analysis with a novel cilium motility mutant mouse.
M. Matsuo, A. Shimada, S. Koshida, Y. Saga, and H. Takeda (2013)
Am J Physiol Lung Cell Mol Physiol 304, L736-L745
   Abstract »    Full Text »    PDF »
Early Decline in Progenitor Diversity in the Marmoset Lateral Ventricle.
K. Azim, S. Zweifel, F. Klaus, K. Yoshikawa, I. Amrein, and O. Raineteau (2013)
Cereb Cortex 23, 922-931
   Abstract »    Full Text »    PDF »
Emergence of metachronal waves in cilia arrays.
J. Elgeti and G. Gompper (2013)
PNAS 110, 4470-4475
   Abstract »    Full Text »    PDF »
Ependymal Ciliary Dysfunction and Reactive Astrocytosis in a Reorganized Subventricular Zone after Stroke.
C. C. Young, J. M. van der Harg, N. J. Lewis, K. J. Brooks, A. M. Buchan, and F. G. Szele (2013)
Cereb Cortex 23, 647-659
   Abstract »    Full Text »    PDF »
Newborn neuroblasts feel the field in the adult brain.
S. Chen and D. V. Schaffer (2013)
EMBO Rep. 14, 105-106
   Full Text »    PDF »
Endogenous electric currents might guide rostral migration of neuroblasts.
L. Cao, D. Wei, B. Reid, S. Zhao, J. Pu, T. Pan, E. N. Yamoah, and M. Zhao (2013)
EMBO Rep. 14, 184-190
   Abstract »    Full Text »    PDF »
Distinct Roles of Nogo-A and Nogo Receptor 1 in the Homeostatic Regulation of Adult Neural Stem Cell Function and Neuroblast Migration.
C. Rolando, R. Parolisi, E. Boda, M. E. Schwab, F. Rossi, and A. Buffo (2012)
J. Neurosci. 32, 17788-17799
   Abstract »    Full Text »    PDF »
Plexin-B2 Regulates the Proliferation and Migration of Neuroblasts in the Postnatal and Adult Subventricular Zone.
B. Saha, A. R. Ypsilanti, C. Boutin, H. Cremer, and A. Chedotal (2012)
J. Neurosci. 32, 16892-16905
   Abstract »    Full Text »    PDF »
Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity.
E. Butti, M. Bacigaluppi, S. Rossi, M. Cambiaghi, M. Bari, A. Cebrian Silla, E. Brambilla, A. Musella, R. De Ceglia, L. Teneud, et al. (2012)
Brain 135, 3320-3335
   Abstract »    Full Text »    PDF »
Subventricular Zone-Derived Neuroblasts Use Vasculature as a Scaffold to Migrate Radially to the Cortex in Neonatal Mice.
C. Le Magueresse, J. Alfonso, C. Bark, M. Eliava, S. Khrulev, and H. Monyer (2012)
Cereb Cortex 22, 2285-2296
   Abstract »    Full Text »    PDF »
Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz.
E. R. Brooks and J. B. Wallingford (2012)
J. Cell Biol. 198, 37-45
   Abstract »    Full Text »    PDF »
Orchestrating transcriptional control of adult neurogenesis.
J. Hsieh (2012)
Genes & Dev. 26, 1010-1021
   Abstract »    Full Text »    PDF »
A method for detecting molecular transport within the cerebral ventricles of live zebrafish (Danio rerio) larvae.
M. H. Turner, J. F. P. Ullmann, and A. R. Kay (2012)
J. Physiol. 590, 2233-2240
   Abstract »    Full Text »    PDF »
Fluid flows and forces in development: functions, features and biophysical principles.
J. B. Freund, J. G. Goetz, K. L. Hill, and J. Vermot (2012)
Development 139, 1229-1245
   Abstract »    Full Text »    PDF »
Can Adult Neural Stem Cells Create New Brains? Plasticity in the Adult Mammalian Neurogenic Niches: Realities and Expectations in the Era of Regenerative Biology.
I. Kazanis (2012)
Neuroscientist 18, 15-27
   Abstract »    Full Text »    PDF »
Postnatal Neurogenesis: Of Mice, Men, and Macaques.
R. M. Walton (2012)
Veterinary Pathology 49, 155-165
   Abstract »    Full Text »    PDF »
Six3 is required for ependymal cell maturation.
A. Lavado and G. Oliver (2011)
Development 138, 5291-5300
   Abstract »    Full Text »    PDF »
Sensory Input Regulates Spatial and Subtype-Specific Patterns of Neuronal Turnover in the Adult Olfactory Bulb.
M. Sawada, N. Kaneko, H. Inada, H. Wake, Y. Kato, Y. Yanagawa, K. Kobayashi, T. Nemoto, J. Nabekura, and K. Sawamoto (2011)
J. Neurosci. 31, 11587-11596
   Abstract »    Full Text »    PDF »
Compensation of Depleted Neuronal Subsets by New Neurons in a Local Area of the Adult Olfactory Bulb.
K. Murata, M. Imai, S. Nakanishi, D. Watanabe, I. Pastan, K. Kobayashi, T. Nihira, H. Mochizuki, S. Yamada, K. Mori, et al. (2011)
J. Neurosci. 31, 10540-10557
   Abstract »    Full Text »    PDF »
Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb.
I. Comte, Y. Kim, C. C. Young, J. M. van der Harg, P. Hockberger, P. J. Bolam, F. Poirier, and F. G. Szele (2011)
J. Cell Sci. 124, 2438-2447
   Abstract »    Full Text »    PDF »
Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb.
B. V. Jacquet, N. Muthusamy, L. J. Sommerville, G. Xiao, H. Liang, Y. Zhang, M. J. Holtzman, and H. T. Ghashghaei (2011)
J. Neurosci. 31, 9368-9382
   Abstract »    Full Text »    PDF »
Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50.
Y. Yang, D. A. Cochran, M. D. Gargano, I. King, N. K. Samhat, B. P. Burger, K. R. Sabourin, Y. Hou, J. Awata, D. A. D. Parry, et al. (2011)
Mol. Biol. Cell 22, 976-987
   Abstract »    Full Text »    PDF »
Neural Crest-Derived Stem Cells Migrate and Differentiate Into Cardiomyocytes After Myocardial Infarction.
Y. Tamura, K. Matsumura, M. Sano, H. Tabata, K. Kimura, M. Ieda, T. Arai, Y. Ohno, H. Kanazawa, S. Yuasa, et al. (2011)
Arterioscler Thromb Vasc Biol 31, 582-589
   Abstract »    Full Text »    PDF »
The Distributional Nexus of Choroid Plexus to Cerebrospinal Fluid, Ependyma and Brain: Toxicologic/Pathologic Phenomena, Periventricular Destabilization, and Lesion Spread.
C. Johanson, E. Stopa, P. McMillan, D. Roth, J. Funk, and G. Krinke (2011)
Toxicol Pathol 39, 186-212
   Abstract »    Full Text »    PDF »
Slit2 Regulates Attractive Eosinophil and Repulsive Neutrophil Chemotaxis through Differential srGAP1 Expression during Lung Inflammation.
B.-Q. Ye, Z. H. Geng, L. Ma, and J.-G. Geng (2010)
J. Immunol. 185, 6294-6305
   Abstract »    Full Text »    PDF »
Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II.
Y. Hirota, A. Meunier, S. Huang, T. Shimozawa, O. Yamada, Y. S. Kida, M. Inoue, T. Ito, H. Kato, M. Sakaguchi, et al. (2010)
Development 137, 3037-3046
   Abstract »    Full Text »    PDF »
Biomimetic cilia arrays generate simultaneous pumping and mixing regimes.
A. R. Shields, B. L. Fiser, B. A. Evans, M. R. Falvo, S. Washburn, and R. Superfine (2010)
PNAS 107, 15670-15675
   Abstract »    Full Text »    PDF »
Quiescence and Activation of Stem and Precursor Cell Populations in the Subependymal Zone of the Mammalian Brain Are Associated with Distinct Cellular and Extracellular Matrix Signals.
I. Kazanis, J. D. Lathia, T. J. Vadakkan, E. Raborn, R. Wan, M. R. Mughal, D. M. Eckley, T. Sasaki, B. Patton, M. P. Mattson, et al. (2010)
J. Neurosci. 30, 9771-9781
   Abstract »    Full Text »    PDF »
Moving away from the midline: new developments for Slit and Robo.
A. R. Ypsilanti, Y. Zagar, and A. Chedotal (2010)
Development 137, 1939-1952
   Abstract »    Full Text »    PDF »
Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development.
X. Huang, J. Liu, T. Ketova, J. T. Fleming, V. K. Grover, M. K. Cooper, Y. Litingtung, and C. Chiang (2010)
PNAS 107, 8422-8427
   Abstract »    Full Text »    PDF »
Cilia Organize Ependymal Planar Polarity.
Z. Mirzadeh, Y.-G. Han, M. Soriano-Navarro, J. M. Garcia-Verdugo, and A. Alvarez-Buylla (2010)
J. Neurosci. 30, 2600-2610
   Abstract »    Full Text »    PDF »
Sensory reception is an attribute of both primary cilia and motile cilia.
R. A. Bloodgood (2010)
J. Cell Sci. 123, 505-509
   Abstract »    Full Text »    PDF »
Electrical dimensions in cell science.
C. D. McCaig, B. Song, and A. M. Rajnicek (2009)
J. Cell Sci. 122, 4267-4276
   Abstract »    Full Text »    PDF »
FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain.
B. V. Jacquet, R. Salinas-Mondragon, H. Liang, B. Therit, J. D. Buie, M. Dykstra, K. Campbell, L. E. Ostrowski, S. L. Brody, and H. T. Ghashghaei (2009)
Development 136, 4021-4031
   Abstract »    Full Text »    PDF »
{beta}8 integrin regulates neurogenesis and neurovascular homeostasis in the adult brain.
A. K. Mobley, J. H. Tchaicha, J. Shin, M. G. Hossain, and J. H. McCarty (2009)
J. Cell Sci. 122, 1842-1851
   Abstract »    Full Text »    PDF »
Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling.
M. Snapyan, M. Lemasson, M. S. Brill, M. Blais, M. Massouh, J. Ninkovic, C. Gravel, F. Berthod, M. Gotz, P. A. Barker, et al. (2009)
J. Neurosci. 29, 4172-4188
   Abstract »    Full Text »    PDF »
Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility.
T. Suzuki, H. Miyamoto, T. Nakahari, I. Inoue, T. Suemoto, B. Jiang, Y. Hirota, S. Itohara, T. C. Saido, T. Tsumoto, et al. (2009)
Hum. Mol. Genet. 18, 1099-1109
   Abstract »    Full Text »    PDF »
Stem Cells Use Distinct Self-renewal Programs at Different Ages.
B.P. Levi and S.J. Morrison (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling.
J. J. Breunig, M. R. Sarkisian, J. I. Arellano, Y. M. Morozov, A. E. Ayoub, S. Sojitra, B. Wang, R. A. Flavell, P. Rakic, and T. Town (2008)
PNAS 105, 13127-13132
   Abstract »    Full Text »    PDF »
Neural stem cells: involvement in adult neurogenesis and CNS repair.
H. Okano and K. Sawamoto (2008)
Phil Trans R Soc B 363, 2111-2122
   Abstract »    Full Text »    PDF »
Robos and Slits Control the Pathfinding and Targeting of Mouse Olfactory Sensory Axons.
K. T. Nguyen-Ba-Charvet, T. Di Meglio, C. Fouquet, and A. Chedotal (2008)
J. Neurosci. 28, 4244-4249
   Abstract »    Full Text »    PDF »
The stumpy gene is required for mammalian ciliogenesis.
T. Town, J. J. Breunig, M. R. Sarkisian, C. Spilianakis, A. E. Ayoub, X. Liu, A. F. Ferrandino, A. R. Gallagher, M. O. Li, P. Rakic, et al. (2008)
PNAS 105, 2853-2858
   Abstract »    Full Text »    PDF »
Brain micro-ecologies: neural stem cell niches in the adult mammalian brain.
P. A Riquelme, E. Drapeau, and F. Doetsch (2008)
Phil Trans R Soc B 363, 123-137
   Abstract »    Full Text »    PDF »
Heat Shock Transcription Factor 1 Is Required for Maintenance of Ciliary Beating in Mice.
E. Takaki, M. Fujimoto, T. Nakahari, S. Yonemura, Y. Miyata, N. Hayashida, K. Yamamoto, R. B. Vallee, T. Mikuriya, K. Sugahara, et al. (2007)
J. Biol. Chem. 282, 37285-37292
   Abstract »    Full Text »    PDF »
Cyclin-Dependent Kinase 5 Is Required for Control of Neuroblast Migration in the Postnatal Subventricular Zone.
Y. Hirota, T. Ohshima, N. Kaneko, M. Ikeda, T. Iwasato, A. B. Kulkarni, K. Mikoshiba, H. Okano, and K. Sawamoto (2007)
J. Neurosci. 27, 12829-12838
   Abstract »    Full Text »    PDF »
Cilia Proteins Control Cerebellar Morphogenesis by Promoting Expansion of the Granule Progenitor Pool.
V. V. Chizhikov, J. Davenport, Q. Zhang, E. K. Shih, O. A. Cabello, J. L. Fuchs, B. K. Yoder, and K. J. Millen (2007)
J. Neurosci. 27, 9780-9789
   Abstract »    Full Text »    PDF »
Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telencephalon and spinal cord.
X. Huang, Y. Litingtung, and C. Chiang (2007)
Development 134, 2095-2105
   Abstract »    Full Text »    PDF »
Hedgehog Signaling in the Subventricular Zone Is Required for Both the Maintenance of Stem Cells and the Migration of Newborn Neurons.
F. Balordi and G. Fishell (2007)
J. Neurosci. 27, 5936-5947
   Abstract »    Full Text »    PDF »
Why Have Neurogenesis in Adult Olfactory Systems? The Presidential Symposium at the 2006 AChemS Conference.
C. D. Derby (2007)
Chem Senses 32, 361-363
   Full Text »    PDF »
Dlx-Dependent and -Independent Regulation of Olfactory Bulb Interneuron Differentiation.
J. E. Long, S. Garel, M. Alvarez-Dolado, K. Yoshikawa, N. Osumi, A. Alvarez-Buylla, and J. L. R. Rubenstein (2007)
J. Neurosci. 27, 3230-3243
   Abstract »    Full Text »    PDF »
Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors.
B. Nait-Oumesmar, N. Picard-Riera, C. Kerninon, L. Decker, D. Seilhean, G. U. Hoglinger, E. C. Hirsch, R. Reynolds, and A. Baron-Van Evercooren (2007)
PNAS 104, 4694-4699
   Abstract »    Full Text »    PDF »
{beta}1 Integrins Control the Formation of Cell Chains in the Adult Rostral Migratory Stream.
R. Belvindrah, S. Hankel, J. Walker, B. L. Patton, and U. Muller (2007)
J. Neurosci. 27, 2704-2717
   Abstract »    Full Text »    PDF »
Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension.
M. A. Curtis, M. Kam, U. Nannmark, M. F. Anderson, M. Z. Axell, C. Wikkelso, S. Holtas, W. M. C. van Roon-Mom, T. Bjork-Eriksson, C. Nordborg, et al. (2007)
Science 315, 1243-1249
   Abstract »    Full Text »    PDF »
The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella.
L. B. Pedersen, P. Rompolas, S. T. Christensen, J. L. Rosenbaum, and S. M. King (2007)
J. Cell Sci. 120, 858-867
   Abstract »    Full Text »    PDF »
Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum..
T. Yamashita, M. Ninomiya, P. Hernandez Acosta, J. M. Garcia-Verdugo, T. Sunabori, M. Sakaguchi, K. Adachi, T. Kojima, Y. Hirota, T. Kawase, et al. (2006)
J. Neurosci. 26, 6627-6636
   Abstract »    Full Text »    PDF »
A novel domain suggests a ciliary function for ASPM, a brain size determining gene.
C. P. Ponting (2006)
Bioinformatics 22, 1031-1035
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882