Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5762): 808-811

Copyright © 2006 by the American Association for the Advancement of Science

Biosynthesis of Plant Volatiles: Nature's Diversity and Ingenuity

Eran Pichersky,1* Joseph P. Noel,2 Natalia Dudareva3

Abstract: Plant volatiles (PVs) are lipophilic molecules with high vapor pressure that serve various ecological roles. The synthesis of PVs involves the removal of hydrophilic moieties and oxidation/hydroxylation, reduction, methylation, and acylation reactions. Some PV biosynthetic enzymes produce multiple products from a single substrate or act on multiple substrates. Genes for PV biosynthesis evolve by duplication of genes that direct other aspects of plant metabolism; these duplicated genes then diverge from each other over time. Changes in the preferred substrate or resultant product of PV enzymes may occur through minimal changes of critical residues. Convergent evolution is often responsible for the ability of distally related species to synthesize the same volatile.

1 Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109, USA.
2 Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
3 Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.

* To whom correspondence should be addressed. E-mail: lelx{at}umich.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Eugenol Production in Achenes and Receptacles of Strawberry Fruits Is Catalyzed by Synthases Exhibiting Distinct Kinetics.
I. Araguez, S. Osorio, T. Hoffmann, J. L. Rambla, N. Medina-Escobar, A. Granell, M. A. Botella, W. Schwab, and V. Valpuesta (2013)
Plant Physiology 163, 946-958
   Abstract »    Full Text »    PDF »
Comprehensive Dissection of Spatiotemporal Metabolic Shifts in Primary, Secondary, and Lipid Metabolism during Developmental Senescence in Arabidopsis.
M. Watanabe, S. Balazadeh, T. Tohge, A. Erban, P. Giavalisco, J. Kopka, B. Mueller-Roeber, A. R. Fernie, and R. Hoefgen (2013)
Plant Physiology 162, 1290-1310
   Abstract »    Full Text »    PDF »
Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites.
M. Friberg, C. Schwind, R. A. Raguso, and J. N. Thompson (2013)
Ann. Bot. 111, 539-550
   Abstract »    Full Text »    PDF »
Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway.
S. Frick, R. Nagel, A. Schmidt, R. R. Bodemann, P. Rahfeld, G. Pauls, W. Brandt, J. Gershenzon, W. Boland, and A. Burse (2013)
PNAS 110, 4194-4199
   Abstract »    Full Text »    PDF »
The production of a key floral volatile is dependent on UV light in a sexually deceptive orchid.
V. Falara, R. Amarasinghe, J. Poldy, E. Pichersky, R. A. Barrow, and R. Peakall (2013)
Ann. Bot. 111, 21-30
   Abstract »    Full Text »    PDF »
Composition and Emission Rhythm of Floral Scent Volatiles from Eight Lily Cut Flowers.
Y. Kong, M. Sun, H.-t. Pan, and Q.-x. Zhang (2012)
J. Amer. Soc. Hort. Sci. 137, 376-382
   Abstract »    Full Text »    PDF »
Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress.
L. Colville, E. L. Bradley, A. S. Lloyd, H. W. Pritchard, L. Castle, and I. Kranner (2012)
J. Exp. Bot. 63, 6519-6530
   Abstract »    Full Text »    PDF »
Assembly of an Evolutionarily New Pathway for {alpha}-Pyrone Biosynthesis in Arabidopsis.
J.-K. Weng, Y. Li, H. Mo, and C. Chapple (2012)
Science 337, 960-964
   Abstract »    Full Text »    PDF »
Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers.
D. Aros, V. Gonzalez, R. K. Allemann, C. T. Muller, C. Rosati, and H. J. Rogers (2012)
J. Exp. Bot. 63, 2739-2752
   Abstract »    Full Text »    PDF »
The Remarkable Pliability and Promiscuity of Specialized Metabolism.
J.- K. Weng and J. P. Noel (2012)
Cold Spring Harb Symp Quant Biol 77, 309-320
   Abstract »    Full Text »    PDF »
Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera.
E. J. McCallum, J. P. Cunningham, J. Lucker, M. P. Zalucki, J. J. De Voss, and J. R. Botella (2011)
J. Exp. Biol. 214, 3672-3677
   Abstract »    Full Text »    PDF »
The Tomato Terpene Synthase Gene Family.
V. Falara, T. A. Akhtar, T. T. H. Nguyen, E. A. Spyropoulou, P. M. Bleeker, I. Schauvinhold, Y. Matsuba, M. E. Bonini, A. L. Schilmiller, R. L. Last, et al. (2011)
Plant Physiology 157, 770-789
   Abstract »    Full Text »    PDF »
Structure and Mechanism of an Arabidopsis Medium/Long-Chain-Length Prenyl Pyrophosphate Synthase.
F.-L. Hsieh, T.-H. Chang, T.-P. Ko, and A. H.- J. Wang (2011)
Plant Physiology 155, 1079-1090
   Abstract »    Full Text »    PDF »
PhMYB4 fine-tunes the floral volatile signature of Petuniaxhybrida through PhC4H.
T. A. Colquhoun, J. Y. Kim, A. E. Wedde, L. A. Levin, K. C. Schmitt, R. C. Schuurink, and D. G. Clark (2011)
J. Exp. Bot. 62, 1133-1143
   Abstract »    Full Text »    PDF »
Short signalling distances make plant communication a soliloquy.
M. Heil and R. M. Adame-Alvarez (2010)
Biol Lett 6, 843-845
   Abstract »    Full Text »    PDF »
Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative.
M. Staudt, B. Jackson, H. El-aouni, B. Buatois, J.-P. Lacroze, J.-L. Poessel, and M.-H. Sauge (2010)
Tree Physiol 30, 1320-1334
   Abstract »    Full Text »    PDF »
EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles' Biosynthesis in Petunia.
B. Spitzer-Rimon, E. Marhevka, O. Barkai, I. Marton, O. Edelbaum, T. Masci, N.-K. Prathapani, E. Shklarman, M. Ovadis, and A. Vainstein (2010)
PLANT CELL 22, 1961-1976
   Abstract »    Full Text »    PDF »
Structure of a Heterotetrameric Geranyl Pyrophosphate Synthase from Mint (Mentha piperita) Reveals Intersubunit Regulation.
T.-H. Chang, F.-L. Hsieh, T.-P. Ko, K.-H. Teng, P.-H. Liang, and A. H.-J. Wang (2010)
PLANT CELL 22, 454-467
   Abstract »    Full Text »    PDF »
Crystal Structure of Albaflavenone Monooxygenase Containing a Moonlighting Terpene Synthase Active Site.
B. Zhao, L. Lei, D. G. Vassylyev, X. Lin, D. E. Cane, S. L. Kelly, H. Yuan, D. C. Lamb, and M. R. Waterman (2009)
J. Biol. Chem. 284, 36711-36719
   Abstract »    Full Text »    PDF »
The Role of Specific Tomato Volatiles in Tomato-Whitefly Interaction.
P. M. Bleeker, P. J. Diergaarde, K. Ament, J. Guerra, M. Weidner, S. Schutz, M. T.J. de Both, M. A. Haring, and R. C. Schuurink (2009)
Plant Physiology 151, 925-935
   Abstract »    Full Text »    PDF »
Beta-caryophyllene is a dietary cannabinoid.
J. Gertsch, M. Leonti, S. Raduner, I. Racz, J.-Z. Chen, X.-Q. Xie, K.-H. Altmann, M. Karsak, and A. Zimmer (2008)
PNAS 105, 9099-9104
   Abstract »    Full Text »    PDF »
X-ray Crystallographic Studies of Substrate Binding to Aristolochene Synthase Suggest a Metal Ion Binding Sequence for Catalysis.
E. Y. Shishova, F. Yu, D. J. Miller, J. A. Faraldos, Y. Zhao, R. M. Coates, R. K. Allemann, D. E. Cane, and D. W. Christianson (2008)
J. Biol. Chem. 283, 15431-15439
   Abstract »    Full Text »    PDF »
Principal Transcriptional Programs Regulating Plant Amino Acid Metabolism in Response to Abiotic Stresses.
H. Less and G. Galili (2008)
Plant Physiology 147, 316-330
   Abstract »    Full Text »    PDF »
Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family.
N. Zhao, J.-L. Ferrer, J. Ross, J. Guan, Y. Yang, E. Pichersky, J. P. Noel, and F. Chen (2008)
Plant Physiology 146, 455-467
   Abstract »    Full Text »    PDF »
Reverse Genetics of Floral Scent: Application of Tobacco Rattle Virus-Based Gene Silencing in Petunia.
B. Spitzer, M. M. B. Zvi, M. Ovadis, E. Marhevka, O. Barkai, O. Edelbaum, I. Marton, T. Masci, M. Alon, S. Morin, et al. (2007)
Plant Physiology 145, 1241-1250
   Abstract »    Full Text »    PDF »
Positive Selection for Single Amino Acid Change Promotes Substrate Discrimination of a Plant Volatile-Producing Enzyme.
T. J. Barkman, T. R. Martins, E. Sutton, and J. T. Stout (2007)
Mol. Biol. Evol. 24, 1320-1329
   Abstract »    Full Text »    PDF »
Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature.
M. Heil and J. C. Silva Bueno (2007)
PNAS 104, 5467-5472
   Abstract »    Full Text »    PDF »
Reduction of Benzenoid Synthesis in Petunia Flowers Reveals Multiple Pathways to Benzoic Acid and Enhancement in Auxin Transport.
I. Orlova, A. Marshall-Colon, J. Schnepp, B. Wood, M. Varbanova, E. Fridman, J. J. Blakeslee, W. A. Peer, A. S. Murphy, D. Rhodes, et al. (2006)
PLANT CELL 18, 3458-3475
   Abstract »    Full Text »    PDF »
Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?.
S. A. Goff and H. J. Klee (2006)
Science 311, 815-819
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882