Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5762): 815-819

Copyright © 2006 by the American Association for the Advancement of Science

Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?

Stephen A. Goff1*, and Harry J. Klee2

Abstract: Plants produce many volatile metabolites. A small subset of these compounds is sensed by animals and humans, and the volatile profiles are defining elements of the distinct flavors of individual foods. Flavor volatiles are derived from an array of nutrients, including amino acids, fatty acids, and carotenoids. In tomato, almost all of the important flavor-related volatiles are derived from essential nutrients. The predominance of volatiles derived from essential nutrients and health-promoting compounds suggests that these volatiles provide important information about the nutritional makeup of foods. Evidence supporting a relation between volatile perception and nutrient or health value will be reviewed.

1 Syngenta Fellows Group, Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709–2257, USA.
2 Plant Molecular and Cellular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Post Office Box 110690, Gainesville, FL 32611–0690, USA.

* To whom correspondence should be addressed. E-mail: stephen.goff{at}syngenta.com


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The expanded tomato fruit volatile landscape.
J. L. Rambla, Y. M. Tikunov, A. J. Monforte, A. G. Bovy, and A. Granell (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative.
J. M. Van Norman, J. Zhang, C. I. Cazzonelli, B. J. Pogson, P. J. Harrison, T. D. H. Bugg, K. X. Chan, A. J. Thompson, and P. N. Benfey (2014)
PNAS 111, E1300-E1309
   Abstract »    Full Text »    PDF »
A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato.
J. Shen, D. Tieman, J. B. Jones, M. G. Taylor, E. Schmelz, A. Huffaker, D. Bies, K. Chen, and H. J. Klee (2014)
J. Exp. Bot. 65, 419-428
   Abstract »    Full Text »    PDF »
On the regulation and function of secondary metabolism during fruit development and ripening.
T. Tohge, S. Alseekh, and A. R. Fernie (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Feed preference in pigs: Relationship between cereal preference and nutrient composition and digestibility.
D. Sola-Oriol, E. Roura, and D. Torrallardona (2014)
J Anim Sci 92, 220-228
   Abstract »    Full Text »    PDF »
Terpene Down-Regulation Triggers Defense Responses in Transgenic Orange Leading to Resistance against Fungal Pathogens.
A. Rodriguez, T. Shimada, M. Cervera, B. Alquezar, J. Gadea, A. Gomez-Cadenas, C. J. De Ollas, M. J. Rodrigo, L. Zacarias, and L. Pena (2014)
Plant Physiology 164, 321-339
   Abstract »    Full Text »    PDF »
A Tomato MADS-Box Transcription Factor, SlMADS1, Acts as a Negative Regulator of Fruit Ripening.
T. Dong, Z. Hu, L. Deng, Y. Wang, M. Zhu, J. Zhang, and G. Chen (2013)
Plant Physiology 163, 1026-1036
   Abstract »    Full Text »    PDF »
Ornithine: The Overlooked Molecule in the Regulation of Polyamine Metabolism3.
R. Majumdar, L. Shao, R. Minocha, S. Long, and S. C. Minocha (2013)
Plant Cell Physiol. 54, 990-1004
   Abstract »    Full Text »    PDF »
Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits.
Y. Pan, G. Bradley, K. Pyke, G. Ball, C. Lu, R. Fray, A. Marshall, S. Jayasuta, C. Baxter, R. van Wijk, et al. (2013)
Plant Physiology 161, 1476-1485
   Abstract »    Full Text »    PDF »
Online, real-time detection of volatile emissions from plant tissue.
F. J. M. Harren and S. M. Cristescu (2013)
AoB Plants 5, plt003
   Abstract »    Full Text »    PDF »
Metabolic Engineering of Tomato Fruit Organic Acid Content Guided by Biochemical Analysis of an Introgression Line.
M. J. Morgan, S. Osorio, B. Gehl, C. J. Baxter, N. J. Kruger, R. G. Ratcliffe, A. R. Fernie, and L. J. Sweetlove (2013)
Plant Physiology 161, 397-407
   Abstract »    Full Text »    PDF »
Role of an esterase in flavor volatile variation within the tomato clade.
C. Goulet, M. H. Mageroy, N. B. Lam, A. Floystad, D. M. Tieman, and H. J. Klee (2012)
PNAS 109, 19009-19014
   Abstract »    Full Text »    PDF »
Feed preference in pigs: Effect of selected protein, fat, and fiber sources at different inclusion rates.
D. Sola-Oriol, E. Roura, and D. Torrallardona (2011)
J Anim Sci 89, 3219-3227
   Abstract »    Full Text »    PDF »
The Tomato Terpene Synthase Gene Family.
V. Falara, T. A. Akhtar, T. T. H. Nguyen, E. A. Spyropoulou, P. M. Bleeker, I. Schauvinhold, Y. Matsuba, M. E. Bonini, A. L. Schilmiller, R. L. Last, et al. (2011)
Plant Physiology 157, 770-789
   Abstract »    Full Text »    PDF »
Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions.
S. Osorio, R. Alba, C. M. B. Damasceno, G. Lopez-Casado, M. Lohse, M. I. Zanor, T. Tohge, B. Usadel, J. K. C. Rose, Z. Fei, et al. (2011)
Plant Physiology 157, 405-425
   Abstract »    Full Text »    PDF »
Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens.
A. Rodriguez, V. San Andres, M. Cervera, A. Redondo, B. Alquezar, T. Shimada, J. Gadea, M. J. Rodrigo, L. Zacarias, L. Palou, et al. (2011)
Plant Physiology 156, 793-802
   Abstract »    Full Text »    PDF »
A Role for Differential Glycoconjugation in the Emission of Phenylpropanoid Volatiles from Tomato Fruit Discovered Using a Metabolic Data Fusion Approach.
Y. M. Tikunov, R. C.H. de Vos, A. M. Gonzalez Paramas, R. D. Hall, and A. G. Bovy (2010)
Plant Physiology 152, 55-70
   Abstract »    Full Text »    PDF »
Use of network analysis to capture key traits affecting tomato organoleptic quality.
P. Carli, S. Arima, V. Fogliano, L. Tardella, L. Frusciante, and M. R. Ercolano (2009)
J. Exp. Bot. 60, 3379-3386
   Abstract »    Full Text »    PDF »
Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents.
M. I. Zanor, J.-L. Rambla, J. Chaib, A. Steppa, A. Medina, A. Granell, A. R. Fernie, and M. Causse (2009)
J. Exp. Bot. 60, 2139-2154
   Abstract »    Full Text »    PDF »
Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development.
F. Mounet, A. Moing, V. Garcia, J. Petit, M. Maucourt, C. Deborde, S. Bernillon, G. Le Gall, I. Colquhoun, M. Defernez, et al. (2009)
Plant Physiology 149, 1505-1528
   Abstract »    Full Text »    PDF »
Feed preference in pigs: Effect of cereal sources at different inclusion rates.
D. Sola-Oriol, E. Roura, and D. Torrallardona (2009)
J Anim Sci 87, 562-570
   Abstract »    Full Text »    PDF »
Feed preference in pigs: Relationship with feed particle size and texture.
D. Sola-Oriol, E. Roura, and D. Torrallardona (2009)
J Anim Sci 87, 571-582
   Abstract »    Full Text »    PDF »
Amino Acid Substitutions in Homologs of the STAY-GREEN Protein Are Responsible for the green-flesh and chlorophyll retainer Mutations of Tomato and Pepper.
C. S. Barry, R. P. McQuinn, M.-Y. Chung, A. Besuden, and J. J. Giovannoni (2008)
Plant Physiology 147, 179-187
   Abstract »    Full Text »    PDF »
Mode of Inheritance of Primary Metabolic Traits in Tomato.
N. Schauer, Y. Semel, I. Balbo, M. Steinfath, D. Repsilber, J. Selbig, T. Pleban, D. Zamir, and A. R. Fernie (2008)
PLANT CELL 20, 509-523
   Abstract »    Full Text »    PDF »
Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human primate.
M. Laska, R. M. R. Bautista, D. Hofelmann, V. Sterlemann, and L. T. H. Salazar (2007)
J. Exp. Biol. 210, 4169-4178
   Abstract »    Full Text »    PDF »
Odorant Category Profile Selectivity of Olfactory Cortex Neurons.
I. Yoshida and K. Mori (2007)
J. Neurosci. 27, 9105-9114
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882