Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 311 (5763): 1002-1005

Copyright © 2006 by the American Association for the Advancement of Science

Nuclear Receptor Rev-erb{alpha} Is a Critical Lithium-Sensitive Component of the Circadian Clock

Lei Yin,1 Jing Wang,1 Peter S. Klein,2 Mitchell A. Lazar1*

Abstract: Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3ß phosphorylates and stabilizes the orphan nuclear receptor Rev-erb{alpha}, a negative component of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of Rev-erb{alpha} and activation of clock gene Bmal1. A form of Rev-erb{alpha} that is insensitive to lithium interferes with the expression of circadian genes. Control of Rev-erb{alpha} protein stability is thus a critical component of the peripheral clock and a biological target of lithium therapy.

1 Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
2 Division of Hematology and Oncology, Department of Medicine, and the Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.

* To whom correspondence should be addressed. E-mail: lazar{at}

Pathophysiology of hypnic headache.
D. Holle, S. Naegel, and M. Obermann (2014)
   Abstract »    Full Text »    PDF »
Nuclear receptors rock around the clock.
X. Zhao, H. Cho, R. T. Yu, A. R. Atkins, M. Downes, and R. M. Evans (2014)
EMBO Rep. 15, 518-528
   Abstract »    Full Text »    PDF »
Defective Craniofacial Development and Brain Function in a Mouse Model for Depletion of Intracellular Inositol Synthesis.
T. Ohnishi, T. Murata, A. Watanabe, A. Hida, H. Ohba, Y. Iwayama, K. Mishima, Y. Gondo, and T. Yoshikawa (2014)
J. Biol. Chem. 289, 10785-10796
   Abstract »    Full Text »    PDF »
A mechanism for robust circadian timekeeping via stoichiometric balance.
J. K. Kim and D. B. Forger (2014)
Mol Syst Biol 8, 630
   Abstract »    Full Text »    PDF »
Association of Rev-erb{alpha} in adipose tissues with Type 2 diabetes mellitus amelioration after gastric bypass surgery in Goto-Kakizaki rats.
R. Zhang, C. Yan, X. Zhou, B. Qian, F. Li, Y. Sun, C. Shi, B. Li, S. Saito, K. Horimoto, et al. (2013)
Am J Physiol Regulatory Integrative Comp Physiol 305, R134-R146
   Abstract »    Full Text »    PDF »
Cellular Circadian Clocks in Mood Disorders.
M. J. McCarthy and D. K. Welsh (2012)
J Biol Rhythms 27, 339-352
   Abstract »    Full Text »    PDF »
USP2a Protein Deubiquitinates and Stabilizes the Circadian Protein CRY1 in Response to Inflammatory Signals.
X. Tong, K. Buelow, A. Guha, R. Rausch, and L. Yin (2012)
J. Biol. Chem. 287, 25280-25291
   Abstract »    Full Text »    PDF »
Rev-erb{alpha} and Rev-erb{beta} coordinately protect the circadian clock and normal metabolic function.
A. Bugge, D. Feng, L. J. Everett, E. R. Briggs, S. E. Mullican, F. Wang, J. Jager, and M. A. Lazar (2012)
Genes & Dev. 26, 657-667
   Abstract »    Full Text »    PDF »
O-GlcNAcylation, Novel Post-Translational Modification Linking Myocardial Metabolism and Cardiomyocyte Circadian Clock.
D. J. Durgan, B. M. Pat, B. Laczy, J. A. Bradley, J.-Y. Tsai, M. H. Grenett, W. F. Ratcliffe, R. A. Brewer, J. Nagendran, C. Villegas-Montoya, et al. (2011)
J. Biol. Chem. 286, 44606-44619
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase-3{beta} (GSK3{beta}) Negatively Regulates PTTG1/Human Securin Protein Stability, and GSK3{beta} Inactivation Correlates with Securin Accumulation in Breast Tumors.
M. Mora-Santos, M. C. Limon-Mortes, S. Giraldez, J. Herrero-Ruiz, C. Saez, M. A. Japon, M. Tortolero, and F. Romero (2011)
J. Biol. Chem. 286, 30047-30056
   Abstract »    Full Text »    PDF »
Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.
L. Caceres, A. S. Necakov, C. Schwartz, S. Kimber, I. J. H. Roberts, and H. M. Krause (2011)
Genes & Dev. 25, 1476-1485
   Abstract »    Full Text »    PDF »
Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells.
T. M. Osland, J. Ferno, B. Havik, I. Heuch, P. Ruoff, O. D. Laerum, and V. M. Steen (2011)
J Psychopharmacol 25, 924-933
   Abstract »    Full Text »    PDF »
Endogenous Ligands for Nuclear Receptors: Digging Deeper.
M. Schupp and M. A. Lazar (2010)
J. Biol. Chem. 285, 40409-40415
   Abstract »    Full Text »    PDF »
Mammalian circadian clock and metabolism - the epigenetic link.
M. M. Bellet and P. Sassone-Corsi (2010)
J. Cell Sci. 123, 3837-3848
   Abstract »    Full Text »    PDF »
A Hierarchical Phosphorylation Cascade That Regulates the Timing of PERIOD Nuclear Entry Reveals Novel Roles for Proline-Directed Kinases and GSK-3{beta}/SGG in Circadian Clocks.
H. W. Ko, E. Y. Kim, J. Chiu, J. T. Vanselow, A. Kramer, and I. Edery (2010)
J. Neurosci. 30, 12664-12675
   Abstract »    Full Text »    PDF »
Nuclear Receptors Linking Circadian Rhythms and Cardiometabolic Control.
H. Duez and B. Staels (2010)
Arterioscler Thromb Vasc Biol 30, 1529-1534
   Abstract »    Full Text »    PDF »
Review: Clock genes at the heart of depression.
D. J. Kennaway (2010)
J Psychopharmacol 24, 5-14
   Abstract »    PDF »
E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb{alpha}.
L. Yin, S. Joshi, N. Wu, X. Tong, and M. A. Lazar (2010)
PNAS 107, 11614-11619
   Abstract »    Full Text »    PDF »
Nuclear Receptor Rev-Erb-{alpha} Circadian Gene Variants and Lithium Carbonate Prophylaxis in Bipolar Affective Disorder.
S. Campos-de-Sousa, C. Guindalini, L. Tondo, J. Munro, S. Osborne, G. Floris, M. Pedrazzoli, S. Tufik, G. Breen, and D. Collier (2010)
J Biol Rhythms 25, 132-137
   Abstract »    PDF »
The Cardiomyocyte Circadian Clock: Emerging Roles in Health and Disease.
D. J. Durgan and M. E. Young (2010)
Circ. Res. 106, 647-658
   Abstract »    Full Text »    PDF »
Rev-erb-{alpha}: an integrator of circadian rhythms and metabolism.
H. Duez and B. Staels (2009)
J Appl Physiol 107, 1972-1980
   Abstract »    Full Text »    PDF »
How nuclear receptors tell time.
M. Teboul, A. Grechez-Cassiau, F. Guillaumond, and F. Delaunay (2009)
J Appl Physiol 107, 1965-1971
   Abstract »    Full Text »    PDF »
Molecular Time: An Often Overlooked Dimension to Cardiovascular Disease.
T. A. Martino and M. J. Sole (2009)
Circ. Res. 105, 1047-1061
   Abstract »    Full Text »    PDF »
Time Is of the Essence: Vascular Implications of the Circadian Clock.
R. D. Rudic (2009)
Circulation 120, 1714-1721
   Full Text »    PDF »
Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention, and treatment of myocardial hypertrophy and failure.
M. J. Sole and T. A. Martino (2009)
J Appl Physiol 107, 1318-1327
   Abstract »    Full Text »    PDF »
Bile acids: regulation of synthesis.
J. Y. L. Chiang (2009)
J. Lipid Res. 50, 1955-1966
   Abstract »    Full Text »    PDF »
Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb{alpha}.
N. Wu, L. Yin, E. A. Hanniman, S. Joshi, and M. A. Lazar (2009)
Genes & Dev. 23, 2201-2209
   Abstract »    Full Text »    PDF »
A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3{beta}.
T. Hirota, W. G. Lewis, A. C. Liu, J. W. Lee, P. G. Schultz, and S. A. Kay (2008)
PNAS 105, 20746-20751
   Abstract »    Full Text »    PDF »
Ligand modulation of REV-ERB{alpha} function resets the peripheral circadian clock in a phasic manner.
Q. J. Meng, A. McMaster, S. Beesley, W. Q. Lu, J. Gibbs, D. Parks, J. Collins, S. Farrow, R. Donn, D. Ray, et al. (2008)
J. Cell Sci. 121, 3629-3635
   Abstract »    Full Text »    PDF »
Is this D Vitamin to Worry About? Vitamin D Insufficiency in an Inpatient Sample.
M. Berk, F. N. Jacka, L. J. Williams, F. Ng, S. Dodd, and J. A. Pasco (2008)
Australian and New Zealand Journal of Psychiatry 42, 874-878
   Abstract »    Full Text »    PDF »
Circadian Phenotype in Patients with the Co-Morbid Alcohol Use and Bipolar Disorders.
T. Hatonen, S. Forsblom, T. Kieseppa, J. Lonnqvist, and T. Partonen (2008)
Alcohol Alcohol. 43, 564-568
   Abstract »    Full Text »    PDF »
The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism.
H. Duez and B. Staels (2008)
Diabetes and Vascular Disease Research 5, 82-88
   Abstract »    PDF »
Bifunctional Role of Rev-erb{alpha} in Adipocyte Differentiation.
J. Wang and M. A. Lazar (2008)
Mol. Cell. Biol. 28, 2213-2220
   Abstract »    Full Text »    PDF »
Rev-erb{alpha}, a Heme Sensor That Coordinates Metabolic and Circadian Pathways.
L. Yin, N. Wu, J. C. Curtin, M. Qatanani, N. R. Szwergold, R. A. Reid, G. M. Waitt, D. J. Parks, K. H. Pearce, G. B. Wisely, et al. (2007)
Science 318, 1786-1789
   Abstract »    Full Text »    PDF »
Circadian Organization oftau Mutant Hamsters: Aftereffects and Splitting.
E. L. Bittman, M. K. Costello, and J. McKinley Brewer (2007)
J Biol Rhythms 22, 425-431
   Abstract »    PDF »
Two differentially active alternative promoters control the expression of the zebrafish orphan nuclear receptor gene Rev-erb{alpha}.
T. Kakizawa, S.-i. Nishio, G. Triqueneaux, S. Bertrand, J. Rambaud, and V. Laudet (2007)
J. Mol. Endocrinol. 38, 555-568
   Abstract »    Full Text »    PDF »
Disturbed Diurnal Rhythm Alters Gene Expression and Exacerbates Cardiovascular Disease With Rescue by Resynchronization.
T. A. Martino, N. Tata, D. D. Belsham, J. Chalmers, M. Straume, P. Lee, H. Pribiag, N. Khaper, P. P. Liu, F. Dawood, et al. (2007)
Hypertension 49, 1104-1113
   Abstract »    Full Text »    PDF »
Inhibition of GSK3 Promotes Replication and Survival of Pancreatic Beta Cells.
R. Mussmann, M. Geese, F. Harder, S. Kegel, U. Andag, A. Lomow, U. Burk, D. Onichtchouk, C. Dohrmann, and M. Austen (2007)
J. Biol. Chem. 282, 12030-12037
   Abstract »    Full Text »    PDF »
Regulation and Function of Glycogen Synthase Kinase-3 Isoforms in Neuronal Survival.
M.-H. Liang and D.-M. Chuang (2007)
J. Biol. Chem. 282, 3904-3917
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase-3 Phosphorylates CdGAP at a Consensus ERK 1 Regulatory Site.
E. I. Danek, J. Tcherkezian, I. Triki, M. Meriane, and N. Lamarche-Vane (2007)
J. Biol. Chem. 282, 3624-3631
   Abstract »    Full Text »    PDF »
Role of Phosphorylation in the Mammalian Circadian Clock.
K. Vanselow and A. Kramer (2007)
Cold Spring Harb Symp Quant Biol 72, 167-176
   Abstract »    PDF »
Nuclear Receptors, Metabolism, and the Circadian Clock.
X. Yang, K. A. Lamia, and R. M. Evans (2007)
Cold Spring Harb Symp Quant Biol 72, 387-394
   Abstract »    PDF »
Role for the Clock Gene in Bipolar Disorder.
C. A. McClung (2007)
Cold Spring Harb Symp Quant Biol 72, 637-644
   Abstract »    PDF »
Systems Biology of Circadian Rhythms: An Outlook.
L. De Haro and S. Panda (2006)
J Biol Rhythms 21, 507-518
   Abstract »    PDF »
The Orphan Nuclear Receptor Rev-erb{alpha} Regulates Circadian Expression of Plasminogen Activator Inhibitor Type 1.
J. Wang, L. Yin, and M. A. Lazar (2006)
J. Biol. Chem. 281, 33842-33848
   Abstract »    Full Text »    PDF »
Lithium Leads to an Increased FRQ Protein Stability and to a Partial Loss of Temperature Compensation in the Neurospora Circadian Clock.
I. W. Jolma, G. Falkeid, M. Bamerni, and P. Ruoff (2006)
J Biol Rhythms 21, 327-334
   Abstract »    PDF »
Wnt signaling: is the party in the nucleus?.
K. Willert and K. A. Jones (2006)
Genes & Dev. 20, 1394-1404
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882