Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 311 (5763): 1008-1012

Copyright © 2006 by the American Association for the Advancement of Science

Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number

Steven W. Flavell,1,2* Christopher W. Cowan,1*{dagger} Tae-Kyung Kim,1 Paul L. Greer,1 Yingxi Lin,1 Suzanne Paradis,1 Eric C. Griffith,1 Linda S. Hu,1 Chinfei Chen,1 Michael E. Greenberg1{ddagger}

Abstract: In the mammalian nervous system, neuronal activity regulates the strength and number of synapses formed. The genetic program that coordinates this process is poorly understood. We show that myocyte enhancer factor 2 (MEF2) transcription factors suppressed excitatory synapse number in a neuronal activity- and calcineurin-dependent manner as hippocampal neurons formed synapses. In response to increased neuronal activity, calcium influx into neurons induced the activation of the calcium/calmodulin-regulated phosphatase calcineurin, which dephosphorylated and activated MEF2. When activated, MEF2 promoted the transcription of a set of genes, including arc and synGAP, that restrict synapse number. These findings define an activity-dependent transcriptional program that may control synapse number during development.

1 Neurobiology Program, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
2 Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.

* These authors contributed equally to this work.

{dagger} Present address: Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390–9070, USA.

{ddagger} To whom correspondence should be addressed. E-mail: michael.greenberg{at}childrens.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage.
S. F. Chan, S. Sances, L. M. Brill, S.-i. Okamoto, R. Zaidi, S. R. McKercher, M. W. Akhtar, N. Nakanishi, and S. A. Lipton (2014)
J. Neurosci. 34, 4640-4653
   Abstract »    Full Text »    PDF »
DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways.
B. Mellstrom, I. Sahun, A. Ruiz-Nuno, P. Murtra, R. Gomez-Villafuertes, M. Savignac, J. C. Oliveros, P. Gonzalez, A. Kastanauskaite, S. Knafo, et al. (2014)
Mol. Cell. Biol. 34, 877-887
   Abstract »    Full Text »    PDF »
Overexpression of the Transcription Factor MEF2D in Hepatocellular Carcinoma Sustains Malignant Character by Suppressing G2-M Transition Genes.
L. Ma, J. Liu, L. Liu, G. Duan, Q. Wang, Y. Xu, F. Xia, J. Shan, J. Shen, Z. Yang, et al. (2014)
Cancer Res. 74, 1452-1462
   Abstract »    Full Text »    PDF »
Cell-intrinsic drivers of dendrite morphogenesis.
S. V. Puram and A. Bonni (2013)
Development 140, 4657-4671
   Abstract »    Full Text »    PDF »
The Human Language-Associated Gene SRPX2 Regulates Synapse Formation and Vocalization in Mice.
G. M. Sia, R. L. Clem, and R. L. Huganir (2013)
Science 342, 987-991
   Abstract »    Full Text »    PDF »
MEF2 Is a Converging Hub for Histone Deacetylase 4 and Phosphatidylinositol 3-Kinase/Akt-Induced Transformation.
E. Di Giorgio, A. Clocchiatti, S. Piccinin, A. Sgorbissa, G. Viviani, P. Peruzzo, S. Romeo, S. Rossi, A. P. Dei Tos, R. Maestro, et al. (2013)
Mol. Cell. Biol. 33, 4473-4491
   Abstract »    Full Text »    PDF »
MHCI Requires MEF2 Transcription Factors to Negatively Regulate Synapse Density during Development and in Disease.
B. M. Elmer, M. L. Estes, S. L. Barrow, and A. K. McAllister (2013)
J. Neurosci. 33, 13791-13804
   Abstract »    Full Text »    PDF »
The Drosophila Transcription Factor Adf-1 (nalyot) Regulates Dendrite Growth by Controlling FasII and Staufen Expression Downstream of CaMKII and Neural Activity.
C. Timmerman, S. Suppiah, B. V. Gurudatta, J. Yang, C. Banerjee, D. J. Sandstrom, V. G. Corces, and S. Sanyal (2013)
J. Neurosci. 33, 11916-11931
   Abstract »    Full Text »    PDF »
Calcineurin Signaling Mediates Activity-Dependent Relocation of the Axon Initial Segment.
M. D. Evans, R. P. Sammons, S. Lebron, A. S. Dumitrescu, T. B. K. Watkins, V. N. Uebele, J. J. Renger, and M. S. Grubb (2013)
J. Neurosci. 33, 6950-6963
   Abstract »    Full Text »    PDF »
Sumoylated MEF2A Coordinately Eliminates Orphan Presynaptic Sites and Promotes Maturation of Presynaptic Boutons.
T. Yamada, Y. Yang, J. Huang, G. Coppola, D. H. Geschwind, and A. Bonni (2013)
J. Neurosci. 33, 4726-4740
   Abstract »    Full Text »    PDF »
Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development.
K. L. Pettem, D. Yokomaku, H. Takahashi, Y. Ge, and A. M. Craig (2013)
J. Cell Biol. 200, 321-336
   Abstract »    Full Text »    PDF »
Regulation of synapse composition by protein acetylation: the role of acetylated cortactin.
T. Catarino, L. Ribeiro, S. D. Santos, and A. L. Carvalho (2013)
J. Cell Sci. 126, 149-162
   Abstract »    Full Text »    PDF »
FoxO6 regulates memory consolidation and synaptic function.
D. A. M. Salih, A. J. Rashid, D. Colas, L. de la Torre-Ubieta, R. P. Zhu, A. A. Morgan, E. E. Santo, D. Ucar, K. Devarajan, C. J. Cole, et al. (2012)
Genes & Dev. 26, 2780-2801
   Abstract »    Full Text »    PDF »
Members of the Myocyte Enhancer Factor 2 Transcription Factor Family Differentially Regulate Bdnf Transcription in Response to Neuronal Depolarization.
M. R. Lyons, C. M. Schwarz, and A. E. West (2012)
J. Neurosci. 32, 12780-12785
   Abstract »    Full Text »    PDF »
Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease.
Y. Chu, G. A. Morfini, L. B. Langhamer, Y. He, S. T. Brady, and J. H. Kordower (2012)
Brain 135, 2058-2073
   Abstract »    Full Text »    PDF »
Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques.
X. Liu, M. Somel, L. Tang, Z. Yan, X. Jiang, S. Guo, Y. Yuan, L. He, A. Oleksiak, Y. Zhang, et al. (2012)
Genome Res. 22, 611-622
   Abstract »    Full Text »    PDF »
Suppression of a MEF2-KLF6 Survival Pathway by PKA Signaling Promotes Apoptosis in Embryonic Hippocampal Neurons.
J. Salma and J. C. McDermott (2012)
J. Neurosci. 32, 2790-2803
   Abstract »    Full Text »    PDF »
Calpain-mediated Degradation of Myocyte Enhancer Factor 2D Contributes to Excitotoxicity by Activation of Extrasynaptic N-Methyl-D-aspartate Receptors.
G. Wei, Y. Yin, W. Li, H. Bito, H. She, and Z. Mao (2012)
J. Biol. Chem. 287, 5797-5805
   Abstract »    Full Text »    PDF »
Activation of Intracellular Metabotropic Glutamate Receptor 5 in Striatal Neurons Leads to Up-regulation of Genes Associated with Sustained Synaptic Transmission Including Arc/Arg3.1 Protein.
V. Kumar, P. G. Fahey, Y.-J. I. Jong, N. Ramanan, and K. L. O'Malley (2012)
J. Biol. Chem. 287, 5412-5425
   Abstract »    Full Text »    PDF »
Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone.
G. Genikhovich and U. Technau (2011)
Development 138, 4911-4919
   Abstract »    Full Text »    PDF »
Calcium Signaling in Synapse-to-Nucleus Communication.
A. M. Hagenston and H. Bading (2011)
Cold Spring Harb Perspect Biol 3, a004564
   Abstract »    Full Text »    PDF »
The Mef2A Transcription Factor Coordinately Regulates a Costamere Gene Program in Cardiac Muscle.
E. P. Ewen, C. M. Snyder, M. Wilson, D. Desjardins, and F. J. Naya (2011)
J. Biol. Chem. 286, 29644-29653
   Abstract »    Full Text »    PDF »
Neuronal Activity-Regulated Gene Transcription in Synapse Development and Cognitive Function.
A. E. West and M. E. Greenberg (2011)
Cold Spring Harb Perspect Biol 3, a005744
   Abstract »    Full Text »    PDF »
Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory.
G. Vetere, L. Restivo, C. J. Cole, P. J. Ross, M. Ammassari-Teule, S. A. Josselyn, and P. W. Frankland (2011)
PNAS 108, 8456-8460
   Abstract »    Full Text »    PDF »
Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly.
J. He, J. Ye, Y. Cai, C. Riquelme, J. O. Liu, X. Liu, A. Han, and L. Chen (2011)
Nucleic Acids Res. 39, 4464-4474
   Abstract »    Full Text »    PDF »
SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons.
L. D. Plant, E. J. Dowdell, I. S. Dementieva, J. D. Marks, and S. A. N. Goldstein (2011)
J. Gen. Physiol. 137, 441-454
   Abstract »    Full Text »    PDF »
Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses.
M. Zhao, J. Raingo, Z. J. Chen, and E. T. Kavalali (2011)
J Neurophysiol 105, 1506-1515
   Abstract »    Full Text »    PDF »
Proline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells.
A. Magli, C. Angelelli, M. Ganassi, F. Baruffaldi, V. Matafora, R. Battini, A. Bachi, G. Messina, A. Rustighi, G. Del Sal, et al. (2010)
J. Biol. Chem. 285, 34518-34527
   Abstract »    Full Text »    PDF »
Reduced Cortical BDNF Expression and Aberrant Memory in Carf Knock-Out Mice.
K. A. McDowell, A. N. Hutchinson, S. J. E. Wong-Goodrich, M. M. Presby, D. Su, R. M. Rodriguiz, K. C. Law, C. L. Williams, W. C. Wetsel, and A. E. West (2010)
J. Neurosci. 30, 7453-7465
   Abstract »    Full Text »    PDF »
The Transcription Factor Mef2 Is Required for Normal Circadian Behavior in Drosophila.
F. J. Blanchard, B. Collins, S. A. Cyran, D. H. Hancock, M. V. Taylor, and J. Blau (2010)
J. Neurosci. 30, 5855-5865
   Abstract »    Full Text »    PDF »
MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations.
N. Le Meur, M. Holder-Espinasse, S. Jaillard, A. Goldenberg, S. Joriot, P. Amati-Bonneau, A. Guichet, M. Barth, A. Charollais, H. Journel, et al. (2010)
J. Med. Genet. 47, 22-29
   Abstract »    Full Text »    PDF »
Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc.
A. Kumar, T. A. Hoffman, J. DeRicco, A. Naqvi, M. K. Jain, and K. Irani (2009)
FASEB J 23, 4344-4352
   Abstract »    Full Text »    PDF »
Synaptic Cross-talk between N-Methyl-D-aspartate Receptors and LAPSER1-{beta}-Catenin at Excitatory Synapses.
M. J. Schmeisser, A. M. Grabrucker, J. Bockmann, and T. M. Boeckers (2009)
J. Biol. Chem. 284, 29146-29157
   Abstract »    Full Text »    PDF »
The Function of Activity-Regulated Genes in the Nervous System.
S. Loebrich and E. Nedivi (2009)
Physiol Rev 89, 1079-1103
   Abstract »    Full Text »    PDF »
Histone Deacetylases 1 and 2 Form a Developmental Switch That Controls Excitatory Synapse Maturation and Function.
M. W. Akhtar, J. Raingo, E. D. Nelson, R. L. Montgomery, E. N. Olson, E. T. Kavalali, and L. M. Monteggia (2009)
J. Neurosci. 29, 8288-8297
   Abstract »    Full Text »    PDF »
Direct Interaction between Myocyte Enhancer Factor 2 (MEF2) and Protein Phosphatase 1{alpha} Represses MEF2-Dependent Gene Expression.
R. L. S. Perry, C. Yang, N. Soora, J. Salma, M. Marback, L. Naghibi, H. Ilyas, J. Chan, J. W. Gordon, and J. C. McDermott (2009)
Mol. Cell. Biol. 29, 3355-3366
   Abstract »    Full Text »    PDF »
A Retrograde Neuronal Survival Response: Target-Derived Neurotrophins Regulate MEF2D and bcl-w.
M. F. Pazyra-Murphy, A. Hans, S. L. Courchesne, C. Karch, K. E. Cosker, H. M. Heerssen, F. L. Watson, T. Kim, M. E. Greenberg, and R. A. Segal (2009)
J. Neurosci. 29, 6700-6709
   Abstract »    Full Text »    PDF »
Tuberous Sclerosis Complex Activity Is Required to Control Neuronal Stress Responses in an mTOR-Dependent Manner.
A. Di Nardo, I. Kramvis, N. Cho, A. Sadowski, L. Meikle, D. J. Kwiatkowski, and M. Sahin (2009)
J. Neurosci. 29, 5926-5937
   Abstract »    Full Text »    PDF »
Activity-Dependent Repression of Cbln1 Expression: Mechanism for Developmental and Homeostatic Regulation of Synapses in the Cerebellum.
T. Iijima, K. Emi, and M. Yuzaki (2009)
J. Neurosci. 29, 5425-5434
   Abstract »    Full Text »    PDF »
A boost in microRNAs shapes up the neuron.
R. Muddashetty and G. J. Bassell (2009)
EMBO J. 28, 617-618
   Abstract »    Full Text »    PDF »
Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels.
R. Fiore, S. Khudayberdiev, M. Christensen, G. Siegel, S. W. Flavell, T.-K. Kim, M. E. Greenberg, and G. Schratt (2009)
EMBO J. 28, 697-710
   Abstract »    Full Text »    PDF »
RSY-1 Is a Local Inhibitor of Presynaptic Assembly in C. elegans.
M. R. Patel and K. Shen (2009)
Science 323, 1500-1503
   Abstract »    Full Text »    PDF »
The Serum Response Factor and a Putative Novel Transcription Factor Regulate Expression of the Immediate-Early Gene Arc/Arg3.1 in Neurons.
S. A. Pintchovski, C. L. Peebles, H. Joo Kim, E. Verdin, and S. Finkbeiner (2009)
J. Neurosci. 29, 1525-1537
   Abstract »    Full Text »    PDF »
Transducing Neuronal Activity into Dendritic Spine Morphology: New Roles for p38 MAP Kinase and N-cadherin.
H. Sugiura, H. Tanaka, S. Yasuda, T. Takemiya, and K. Yamagata (2009)
Neuroscientist 15, 90-104
   Abstract »    PDF »
Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons.
T. Kawashima, H. Okuno, M. Nonaka, A. Adachi-Morishima, N. Kyo, M. Okamura, S. Takemoto-Kimura, P. F. Worley, and H. Bito (2009)
PNAS 106, 316-321
   Abstract »    Full Text »    PDF »
SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis.
H.-W. Chao, C.-J. Hong, T.-N. Huang, Y.-L. Lin, and Y.-P. Hsueh (2008)
J. Cell Biol. 182, 141-155
   Abstract »    Full Text »    PDF »
Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry.
E. M. Morrow, S.-Y. Yoo, S. W. Flavell, T.-K. Kim, Y. Lin, R. S. Hill, N. M. Mukaddes, S. Balkhy, G. Gascon, A. Hashmi, et al. (2008)
Science 321, 218-223
   Abstract »    Full Text »    PDF »
Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo.
H. Li, J. C. Radford, M. J. Ragusa, K. L. Shea, S. R. McKercher, J. D. Zaremba, W. Soussou, Z. Nie, Y.-J. Kang, N. Nakanishi, et al. (2008)
PNAS 105, 9397-9402
   Abstract »    Full Text »    PDF »
MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function.
A. C. Barbosa, M.-S. Kim, M. Ertunc, M. Adachi, E. D. Nelson, J. McAnally, J. A. Richardson, E. T. Kavalali, L. M. Monteggia, R. Bassel-Duby, et al. (2008)
PNAS 105, 9391-9396
   Abstract »    Full Text »    PDF »
Myocyte Enhancer Factor 2C as a Neurogenic and Antiapoptotic Transcription Factor in Murine Embryonic Stem Cells.
Z. Li, S. R. McKercher, J. Cui, Z. Nie, W. Soussou, A. J. Roberts, T. Sallmen, J. H. Lipton, M. Talantova, S.-i. Okamoto, et al. (2008)
J. Neurosci. 28, 6557-6568
   Abstract »    Full Text »    PDF »
The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate.
A. Schuler, M. Schwieger, A. Engelmann, K. Weber, S. Horn, U. Muller, M. A. Arnold, E. N. Olson, and C. Stocking (2008)
Blood 111, 4532-4541
   Abstract »    Full Text »    PDF »
Myocyte Enhancer Factor 2A Is Transcriptionally Autoregulated.
B. Ramachandran, G. Yu, S. Li, B. Zhu, and T. Gulick (2008)
J. Biol. Chem. 283, 10318-10329
   Abstract »    Full Text »    PDF »
The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis.
H. Cline and K. Haas (2008)
J. Physiol. 586, 1509-1517
   Abstract »    Full Text »    PDF »
mef2 activity levels differentially affect gene expression during Drosophila muscle development.
S. J. Elgar, J. Han, and M. V. Taylor (2008)
PNAS 105, 918-923
   Abstract »    Full Text »    PDF »
MEF2: a central regulator of diverse developmental programs.
M. J. Potthoff and E. N. Olson (2007)
Development 134, 4131-4140
   Abstract »    Full Text »    PDF »
Nemo-Like Kinase-Myocyte Enhancer Factor 2A Signaling Regulates Anterior Formation in Xenopus Development.
K. Satoh, J. Ohnishi, A. Sato, M. Takeyama, S.-i. Iemura, T. Natsume, and H. Shibuya (2007)
Mol. Cell. Biol. 27, 7623-7630
   Abstract »    Full Text »    PDF »
PIASx Is a MEF2 SUMO E3 Ligase That Promotes Postsynaptic Dendritic Morphogenesis.
A. Shalizi, P. M. Bilimoria, J. Stegmuller, B. Gaudilliere, Y. Yang, K. Shuai, and A. Bonni (2007)
J. Neurosci. 27, 10037-10046
   Abstract »    Full Text »    PDF »
Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression.
D. J. Schulz, J.-M. Goaillard, and E. E. Marder (2007)
PNAS 104, 13187-13191
   Abstract »    Full Text »    PDF »
Cabin1 Represses MEF2 Transcriptional Activity by Association with a Methyltransferase, SUV39H1.
H. Jang, D.-E. Choi, H. Kim, E.-J. Cho, and H.-D. Youn (2007)
J. Biol. Chem. 282, 11172-11179
   Abstract »    Full Text »    PDF »
Network activity-independent coordinated gene expression program for synapse assembly.
L. M. Valor, P. Charlesworth, L. Humphreys, C. N. G. Anderson, and S. G. N. Grant (2007)
PNAS 104, 4658-4663
   Abstract »    Full Text »    PDF »
AKT and CDK5/p35 Mediate Brain-derived Neurotrophic Factor Induction of DARPP-32 in Medium Size Spiny Neurons in Vitro.
A. Bogush, S. Pedrini, J. Pelta-Heller, T. Chan, Q. Yang, Z. Mao, E. Sluzas, T. Gieringer, and M. E. Ehrlich (2007)
J. Biol. Chem. 282, 7352-7359
   Abstract »    Full Text »    PDF »
Histone Deacetylase 3 Interacts with and Deacetylates Myocyte Enhancer Factor 2.
S. Gregoire, L. Xiao, J. Nie, X. Zhang, M. Xu, J. Li, J. Wong, E. Seto, and X.-J. Yang (2007)
Mol. Cell. Biol. 27, 1280-1295
   Abstract »    Full Text »    PDF »
KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC.
A. M. van der Linden, K. M. Nolan, and P. Sengupta (2007)
EMBO J. 26, 358-370
   Abstract »    Full Text »    PDF »
Differential Effects of Ca2+ and cAMP on Transcription Mediated by MEF2D and cAMP-response Element-binding Protein in Hippocampal Neurons.
J. L. Belfield, C. Whittaker, M. Z. Cader, and S. Chawla (2006)
J. Biol. Chem. 281, 27724-27732
   Abstract »    Full Text »    PDF »
MEF2 Activates a Genetic Program Promoting Chamber Dilation and Contractile Dysfunction in Calcineurin-Induced Heart Failure.
R. J. van Oort, E. van Rooij, M. Bourajjaj, J. Schimmel, M. A. Jansen, R. van der Nagel, P. A. Doevendans, M. D. Schneider, C. J.A. van Echteld, and L. J. De Windt (2006)
Circulation 114, 298-308
   Abstract »    Full Text »    PDF »
Neuroscience. SUMO wrestles the synapse..
A. A. Beg and P. Scheiffele (2006)
Science 311, 962-963
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882