Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 311 (5767): 1617-1621

Copyright © 2006 by the American Association for the Advancement of Science

Parietal-Eye Phototransduction Components and Their Potential Evolutionary Implications

Chih-Ying Su,1*{dagger} Dong-Gen Luo,1 Akihisa Terakita,2 Yoshinori Shichida,2 Hsi-Wen Liao,1 Manija A. Kazmi,3 Thomas P. Sakmar,3 King-Wai Yau1*

Abstract: The parietal-eye photoreceptor is unique because it has two antagonistic light signaling pathways in the same cell—a hyperpolarizing pathway maximally sensitive to blue light and a depolarizing pathway maximally sensitive to green light. Here, we report the molecular components of these two pathways. We found two opsins in the same cell: the blue-sensitive pinopsin and a previously unidentified green-sensitive opsin, which we name parietopsin. Signaling components included gustducin-{alpha} and G{alpha}o, but not rod or cone transducin-{alpha}. Single-cell recordings demonstrated that Go mediates the depolarizing response. Gustducin-{alpha} resembles transducin-{alpha} functionally and likely mediates the hyperpolarizing response. The parietopsin-Go signaling pair provides clues about how rod and cone phototransduction might have evolved.

1 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
2 Department of Biophysics, Graduate School of Science, Kyoto University and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan.
3 Laboratory of Molecular Biology and Biochemistry, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

{dagger} Present address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.

* To whom correspondence should be addressed. E-mail:{at} (C.-Y.S.); kwyau{at} (K.-W.Y.)

Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye.
P. Vopalensky, J. Pergner, M. Liegertova, E. Benito-Gutierrez, D. Arendt, and Z. Kozmik (2012)
PNAS 109, 15383-15388
   Abstract »    Full Text »    PDF »
The lizard celestial compass detects linearly polarized light in the blue.
G. Beltrami, A. Parretta, F. Petrucci, P. Buttini, C. Bertolucci, and A. Foa (2012)
J. Exp. Biol. 215, 3200-3206
   Abstract »    Full Text »    PDF »
Twilight spectral dynamics and the coral reef invertebrate spawning response.
A. M. Sweeney, C. A. Boch, S. Johnsen, and D. E. Morse (2011)
J. Exp. Biol. 214, 770-777
   Abstract »    Full Text »    PDF »
Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock.
C. Katti, K. Kempler, M. L. Porter, A. Legg, R. Gonzalez, E. Garcia-Rivera, D. Dugger, and B.- A. Battelle (2010)
J. Exp. Biol. 213, 2589-2601
   Abstract »    Full Text »    PDF »
A sky polarization compass in lizards: the central role of the parietal eye.
G. Beltrami, C. Bertolucci, A. Parretta, F. Petrucci, and A. Foa (2010)
J. Exp. Biol. 213, 2048-2054
   Abstract »    Full Text »    PDF »
Eye evolution: common use and independent recruitment of genetic components.
P. Vopalensky and Z. Kozmik (2009)
Phil Trans R Soc B 364, 2819-2832
   Abstract »    Full Text »    PDF »
The evolution of eyes and visually guided behaviour.
D.-E. Nilsson (2009)
Phil Trans R Soc B 364, 2833-2847
   Abstract »    Full Text »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Evolution of vertebrate rod and cone phototransduction genes.
D. Larhammar, K. Nordstrom, and T. A. Larsson (2009)
Phil Trans R Soc B 364, 2867-2880
   Abstract »    Full Text »    PDF »
Evolution of opsins and phototransduction.
Y. Shichida and T. Matsuyama (2009)
Phil Trans R Soc B 364, 2881-2895
   Abstract »    Full Text »    PDF »
Evidence for light perception in a bioluminescent organ.
D. Tong, N. S. Rozas, T. H. Oakley, J. Mitchell, N. J. Colley, and M. J. McFall-Ngai (2009)
PNAS 106, 9836-9841
   Abstract »    Full Text »    PDF »
Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade.
M. Koyanagi, K. Takano, H. Tsukamoto, K. Ohtsu, F. Tokunaga, and A. Terakita (2008)
PNAS 105, 15576-15580
   Abstract »    Full Text »    PDF »
How vision begins: An odyssey.
D.-G. Luo, T. Xue, and K.-W. Yau (2008)
PNAS 105, 9855-9862
   Abstract »    Full Text »    PDF »
Tbx2b is required for the development of the parapineal organ.
C. D. Snelson, K. Santhakumar, M. E. Halpern, and J. T. Gamse (2008)
Development 135, 1693-1702
   Abstract »    Full Text »    PDF »
Key transitions during the evolution of animal phototransduction: novelty, "tree-thinking," co-option, and co-duplication.
D. C. Plachetzki and T. H. Oakley (2007)
Integr. Comp. Biol. 47, 759-769
   Abstract »    Full Text »    PDF »
Casting a genetic light on the evolution of eyes..
R. D. Fernald (2006)
Science 313, 1914-1918
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882