Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 312 (5771): 233-236

Copyright © 2006 by the American Association for the Advancement of Science

Nuclear Receptor-Dependent Bile Acid Signaling Is Required for Normal Liver Regeneration

Wendong Huang,1* Ke Ma,1 Jun Zhang,1{dagger} Mohammed Qatanani,1{ddagger} James Cuvillier,1 Jun Liu,1 Bingning Dong,1 Xiongfei Huang,2 David D. Moore1§

Abstract: Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor–dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth.

1 Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
2 Department of Gene Regulation and Drug Discovery, City of Hope Beckman Research Institute, 1500 East Duarte, Duarte, CA 91010, USA.

* Present address: Department of Gene Regulation and Drug Discovery, City of Hope Beckman Research Institute, 1500 East Duarte, Duarte, CA 91010, USA.

{dagger} Present address: Clark Center W252, 318 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.

{ddagger} Present address: Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.

§ To whom correspondence should be addressed. E-mail: moore{at}bcm.tmc.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice.
X. Zhang, S. Huang, M. Gao, J. Liu, X. Jia, Q. Han, S. Zheng, Y. Miao, S. Li, H. Weng, et al. (2014)
PNAS 111, 2277-2282
   Abstract »    Full Text »    PDF »
Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor.
X. Song, Y. Chen, L. Valanejad, R. Kaimal, B. Yan, M. Stoner, and R. Deng (2013)
J. Lipid Res. 54, 3030-3044
   Abstract »    Full Text »    PDF »
Eosinophils secrete IL-4 to facilitate liver regeneration.
Y. P. S. Goh, N. C. Henderson, J. E. Heredia, A. Red Eagle, J. I. Odegaard, N. Lehwald, K. D. Nguyen, D. Sheppard, L. Mukundan, R. M. Locksley, et al. (2013)
PNAS 110, 9914-9919
   Abstract »    Full Text »    PDF »
Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice.
I. Uriarte, M. G. Fernandez-Barrena, M. J. Monte, M. U. Latasa, H. C. Y. Chang, S. Carotti, U. Vespasiani-Gentilucci, S. Morini, E. Vicente, A. R. Concepcion, et al. (2013)
Gut 62, 899-910
   Abstract »    Full Text »    PDF »
BMP4 is a novel paracrine inhibitor of liver regeneration.
N. Do, R. Zhao, K. Ray, K. Ho, M. Dib, X. Ren, P. Kuzontkoski, E. Terwilliger, and S. J. Karp (2012)
Am J Physiol Gastrointest Liver Physiol 303, G1220-G1227
   Abstract »    Full Text »    PDF »
Critical role of farnesoid X receptor for hepatocellular carcinoma cell proliferation.
T. Fujino, A. Takeuchi, A. Maruko-Ohtake, Y. Ohtake, J. Satoh, T. Kobayashi, T. Tanaka, H. Ito, R. Sakamaki, R. Kashimura, et al. (2012)
J. Biochem. 152, 577-586
   Abstract »    Full Text »    PDF »
Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma.
H. Su, C. Ma, J. Liu, N. Li, M. Gao, A. Huang, X. Wang, W. Huang, and X. Huang (2012)
Am J Physiol Gastrointest Liver Physiol 303, G1245-G1253
   Abstract »    Full Text »    PDF »
Abcb11 Deficiency Induces Cholestasis Coupled to Impaired {beta}-Fatty Acid Oxidation in Mice.
Y. Zhang, F. Li, A. D. Patterson, Y. Wang, K. W. Krausz, G. Neale, S. Thomas, D. Nachagari, P. Vogel, M. Vore, et al. (2012)
J. Biol. Chem. 287, 24784-24794
   Abstract »    Full Text »    PDF »
Suppression of Hepatocyte Proliferation by Hepatocyte Nuclear Factor 4{alpha} in Adult Mice.
J. A. Bonzo, C. H. Ferry, T. Matsubara, J.-H. Kim, and F. J. Gonzalez (2012)
J. Biol. Chem. 287, 7345-7356
   Abstract »    Full Text »    PDF »
Effect of ursodeoxycholic acid supplementation on growth, carcass characteristics, and meat quality of Wagyu heifers (Japanese Black cattle).
M. Irie, M. Kouda, and H. Matono (2011)
J Anim Sci 89, 4221-4226
   Abstract »    Full Text »    PDF »
APOE {varepsilon}4 is associated with higher vitamin D levels in targeted replacement mice and humans.
P. Huebbe, A. Nebel, S. Siegert, J. Moehring, C. Boesch-Saadatmandi, E. Most, J. Pallauf, S. Egert, M. J. Muller, S. Schreiber, et al. (2011)
FASEB J 25, 3262-3270
   Abstract »    Full Text »    PDF »
Aldo-keto reductase 1B7 is a target gene of FXR and regulates lipid and glucose homeostasis.
X. Ge, L. Yin, H. Ma, T. Li, J. Y. L. Chiang, and Y. Zhang (2011)
J. Lipid Res. 52, 1561-1568
   Abstract »    Full Text »    PDF »
Farnesoid X Receptor Activation by Chenodeoxycholic Acid Induces Detoxifying Enzymes through AMP-Activated Protein Kinase and Extracellular Signal-Regulated Kinase 1/2-Mediated Phosphorylation of CCAAT/Enhancer Binding Protein {beta}.
K. Noh, Y. M. Kim, Y. W. Kim, and S. G. Kim (2011)
Drug Metab. Dispos. 39, 1451-1459
   Abstract »    Full Text »    PDF »
Glycogen synthase kinase 3{beta}-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration.
S. Sekiya and A. Suzuki (2011)
PNAS 108, 11175-11180
   Abstract »    Full Text »    PDF »
Increased Activation of the Wnt/{beta}-Catenin Pathway in Spontaneous Hepatocellular Carcinoma Observed in Farnesoid X Receptor Knockout Mice.
A. Wolfe, A. Thomas, G. Edwards, R. Jaseja, G. L. Guo, and U. Apte (2011)
J. Pharmacol. Exp. Ther. 338, 12-21
   Abstract »    Full Text »    PDF »
Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
D. Fu, Y. Wakabayashi, J. Lippincott-Schwartz, and I. M. Arias (2011)
PNAS 108, 1403-1408
   Abstract »    Full Text »    PDF »
Identification of microRNAs during rat liver regeneration after partial hepatectomy and modulation by ursodeoxycholic acid.
R. E. Castro, D. M. S. Ferreira, X. Zhang, P. M. Borralho, A. L. Sarver, Y. Zeng, C. J. Steer, B. T. Kren, and C. M. P. Rodrigues (2010)
Am J Physiol Gastrointest Liver Physiol 299, G887-G897
   Abstract »    Full Text »    PDF »
Tob1 is a constitutively expressed repressor of liver regeneration.
K. J. Ho, N. L. Do, H. H. Otu, M. J. Dib, X. Ren, K. Enjyoji, S. C. Robson, E. F. Terwilliger, and S. J. Karp (2010)
J. Exp. Med. 207, 1197-1208
   Abstract »    Full Text »    PDF »
Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation.
C. D. Klaassen and L. M. Aleksunes (2010)
Pharmacol. Rev. 62, 1-96
   Abstract »    Full Text »    PDF »
The normal mechanisms of pregnancy-induced liver growth are not maintained in mice lacking the bile acid sensor Fxr.
A. Milona, B. M. Owen, S. van Mil, D. Dormann, C. Mataki, M. Boudjelal, W. Cairns, K. Schoonjans, S. Milligan, M. Parker, et al. (2010)
Am J Physiol Gastrointest Liver Physiol 298, G151-G158
   Abstract »    Full Text »    PDF »
Bile acids: regulation of synthesis.
J. Y. L. Chiang (2009)
J. Lipid Res. 50, 1955-1966
   Abstract »    Full Text »    PDF »
Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice.
I. L. Csanaky, L. M. Aleksunes, Y. Tanaka, and C. D. Klaassen (2009)
Am J Physiol Gastrointest Liver Physiol 297, G419-G433
   Abstract »    Full Text »    PDF »
Inhibition of Human Steroid 5{beta}-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex.
J. E. Drury, L. Di Costanzo, T. M. Penning, and D. W. Christianson (2009)
J. Biol. Chem. 284, 19786-19790
   Abstract »    Full Text »    PDF »
Differential Modulation of Farnesoid X Receptor Signaling Pathway by the Thiazolidinediones.
R. Kaimal, X. Song, B. Yan, R. King, and R. Deng (2009)
J. Pharmacol. Exp. Ther. 330, 125-134
   Abstract »    Full Text »    PDF »
FGF15/FGFR4 Integrates Growth Factor Signaling with Hepatic Bile Acid Metabolism and Insulin Action.
D.-J. Shin and T. F. Osborne (2009)
J. Biol. Chem. 284, 11110-11120
   Abstract »    Full Text »    PDF »
FXR Promotes Endothelial Cell Motility Through Coordinated Regulation of FAK and MMP-9.
A. Das, U. Yaqoob, D. Mehta, and V. H. Shah (2009)
Arterioscler Thromb Vasc Biol 29, 562-570
   Abstract »    Full Text »    PDF »
Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation.
P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels (2009)
Physiol Rev 89, 147-191
   Abstract »    Full Text »    PDF »
The p300 Acetylase Is Critical for Ligand-activated Farnesoid X Receptor (FXR) Induction of SHP.
S. Fang, S. Tsang, R. Jones, B. Ponugoti, H. Yoon, S.-Y. Wu, C.-M. Chiang, T. M. Willson, and J. K. Kemper (2008)
J. Biol. Chem. 283, 35086-35095
   Abstract »    Full Text »    PDF »
Nuclear Bile Acid Receptor FXR Protects against Intestinal Tumorigenesis.
S. Modica, S. Murzilli, L. Salvatore, D. R. Schmidt, and A. Moschetta (2008)
Cancer Res. 68, 9589-9594
   Abstract »    Full Text »    PDF »
The Role of FXR in Disorders of Bile Acid Homeostasis.
J. J. Eloranta and G. A. Kullak-Ublick (2008)
Physiology 23, 286-295
   Abstract »    Full Text »    PDF »
Identification of Human Hepatic Cytochrome P450 Enzymes Involved in the Biotransformation of Cholic and Chenodeoxycholic Acid.
A. K. Deo and S. M. Bandiera (2008)
Drug Metab. Dispos. 36, 1983-1991
   Abstract »    Full Text »    PDF »
TGF{beta}1, TNF{alpha}, and insulin signaling crosstalk in regulation of the rat cholesterol 7{alpha}-hydroxylase gene expression.
T. Li, H. Ma, and J. Y. L. Chiang (2008)
J. Lipid Res. 49, 1981-1989
   Abstract »    Full Text »    PDF »
FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption.
D. Jung, T. Inagaki, R. D. Gerard, P. A. Dawson, S. A. Kliewer, D. J. Mangelsdorf, and A. Moschetta (2007)
J. Lipid Res. 48, 2693-2700
   Abstract »    Full Text »    PDF »
Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine.
I. Kim, S.-H. Ahn, T. Inagaki, M. Choi, S. Ito, G. L. Guo, S. A. Kliewer, and F. J. Gonzalez (2007)
J. Lipid Res. 48, 2664-2672
   Abstract »    Full Text »    PDF »
Regeneration in Liver and Pancreas: Time to Cut the Umbilical Cord?.
Y. Dor and B. Z. Stanger (2007)
Sci. STKE 2007, pe66
   Abstract »    Full Text »    PDF »
Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice.
I. Kim, K. Morimura, Y. Shah, Q. Yang, J. M. Ward, and F. J. Gonzalez (2007)
Carcinogenesis 28, 940-946
   Abstract »    Full Text »    PDF »
Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM).
M. D. Muzumdar, L. Luo, and H. Zong (2007)
PNAS 104, 4495-4500
   Abstract »    Full Text »    PDF »
Spontaneous Development of Liver Tumors in the Absence of the Bile Acid Receptor Farnesoid X Receptor.
F. Yang, X. Huang, T. Yi, Y. Yen, D. D. Moore, and W. Huang (2007)
Cancer Res. 67, 863-867
   Abstract »    Full Text »    PDF »
The Nuclear Receptor Constitutively Active/Androstane Receptor Regulates Type 1 Deiodinase and Thyroid Hormone Activity in the Regenerating Mouse Liver.
E. S. Tien, K. Matsui, R. Moore, and M. Negishi (2007)
J. Pharmacol. Exp. Ther. 320, 307-313
   Abstract »    Full Text »    PDF »
Disruption of an SP2/KLF6 Repression Complex by SHP Is Required for Farnesoid X Receptor-induced Endothelial Cell Migration.
A. Das, M. E. Fernandez-Zapico, S. Cao, J. Yao, S. Fiorucci, R. P. Hebbel, R. Urrutia, and V. H. Shah (2006)
J. Biol. Chem. 281, 39105-39113
   Abstract »    Full Text »    PDF »
The farnesoid x receptor is expressed in breast cancer and regulates apoptosis and aromatase expression..
K. E. Swales, M. Korbonits, R. Carpenter, D. T. Walsh, T. D. Warner, and D. Bishop-Bailey (2006)
Cancer Res. 66, 10120-10126
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882