Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 312 (5773): 592-596

Copyright © 2006 by the American Association for the Advancement of Science

SV2 Is the Protein Receptor for Botulinum Neurotoxin A

Min Dong,1 Felix Yeh,1,2 William H. Tepp,3 Camin Dean,1 Eric A. Johnson,3 Roger Janz,4 Edwin R. Chapman1,2*

Abstract: How the widely used botulinum neurotoxin A (BoNT/A) recognizes and enters neurons is poorly understood. We found that BoNT/A enters neurons by binding to the synaptic vesicle protein SV2 (isoforms A, B, and C). Fragments of SV2 that harbor the toxin interaction domain inhibited BoNT/A from binding to neurons. BoNT/A binding to SV2A and SV2B knockout hippocampal neurons was abolished and was restored by expressing SV2A, SV2B, or SV2C. Reduction of SV2 expression in PC12 and Neuro-2a cells also inhibited entry of BoNT/A, which could be restored by expressing SV2 isoforms. Finally, mice that lacked an SV2 isoform (SV2B) displayed reduced sensitivity to BoNT/A. Thus, SV2 acts as the protein receptor for BoNT/A.

1 Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
2 Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, WI 53706, USA.
3 Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, WI 53706, USA.
4 W. M. Keck Center for Learning and Memory and Department of Neurobiology and Anatomy, University of Texas–Houston Medical School, Houston, TX 77030, USA.

* To whom correspondence should be addressed: E-mail: chapman{at}

More than at the Neuromuscular Synapse: Actions of Botulinum Neurotoxin A in the Central Nervous System.
R. Mazzocchio and M. Caleo (2014)
   Abstract »    Full Text »    PDF »
Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment.
eLife Sci 3, e01524
Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro.
R. C. M. Whitemarsh, W. H. Tepp, M. Bradshaw, G. Lin, C. L. Pier, J. M. Scherf, E. A. Johnson, and S. Pellett (2013)
Infect. Immun. 81, 3894-3902
   Abstract »    Full Text »    PDF »
The Receptor Binding Domain of Botulinum Neurotoxin Serotype A (BoNT/A) Inhibits BoNT/A and BoNT/E Intoxications In Vivo.
A. Ben David, E. Diamant, A. Barnea, O. Rosen, A. Torgeman, and R. Zichel (2013)
Clin. Vaccine Immunol. 20, 1266-1273
   Abstract »    Full Text »    PDF »
Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons.
J. Meng, J. Wang, G. W. Lawrence, and J. O. Dolly (2013)
FASEB J 27, 3167-3180
   Abstract »    Full Text »    PDF »
Enhancing the Protective Immune Response against Botulism.
A. Przedpelski, W. H. Tepp, A. R. Kroken, Z. Fu, J.-J. P. Kim, E. A. Johnson, and J. T. Barbieri (2013)
Infect. Immun. 81, 2638-2644
   Abstract »    Full Text »    PDF »
Molecular assembly of botulinum neurotoxin progenitor complexes.
D. A. Benefield, S. K. Dessain, N. Shine, M. D. Ohi, and D. B. Lacy (2013)
PNAS 110, 5630-5635
   Abstract »    Full Text »    PDF »
General Aspects and Recent Advances on Bacterial Protein Toxins.
E. Lemichez and J. T. Barbieri (2013)
Cold Spring Harb Perspect Med 3, a013573
   Abstract »    Full Text »    PDF »
Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis.
J. Wang, T. H. Zurawski, J. Meng, G. W. Lawrence, K. R. Aoki, L. Wheeler, and J. O. Dolly (2012)
FASEB J 26, 5035-5048
   Abstract »    Full Text »    PDF »
Botulinum Neurotoxin Serotype C Associates with Dual Ganglioside Receptors to Facilitate Cell Entry.
A. P.- A. Karalewitz, Z. Fu, M. R. Baldwin, J.-J. P. Kim, and J. T. Barbieri (2012)
J. Biol. Chem. 287, 40806-40816
   Abstract »    Full Text »    PDF »
Glycosylation Is Dispensable for Sorting of Synaptotagmin 1 but Is Critical for Targeting of SV2 and Synaptophysin to Recycling Synaptic Vesicles.
S. E. Kwon and E. R. Chapman (2012)
J. Biol. Chem. 287, 35658-35668
   Abstract »    Full Text »    PDF »
All three components of the neuronal SNARE complex contribute to secretory vesicle docking.
Y. Wu, Y. Gu, M. K. Morphew, J. Yao, F. L. Yeh, M. Dong, and E. R. Chapman (2012)
J. Cell Biol. 198, 323-330
   Abstract »    Full Text »    PDF »
Unique Biological Activity of Botulinum D/C Mosaic Neurotoxin in Murine Species.
K. Nakamura, T. Kohda, Y. Shibata, K. Tsukamoto, H. Arimitsu, M. Hayashi, M. Mukamoto, N. Sasakawa, and S. Kozaki (2012)
Infect. Immun. 80, 2886-2893
   Abstract »    Full Text »    PDF »
The Synaptic Vesicle Glycoprotein 2A Ligand Levetiracetam Inhibits Presynaptic Ca2+ Channels through an Intracellular Pathway.
C. Vogl, S. Mochida, C. Wolff, B. J. Whalley, and G. J. Stephens (2012)
Mol. Pharmacol. 82, 199-208
   Abstract »    Full Text »    PDF »
Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins.
L. Peng, R. P.- A. Berntsson, W. H. Tepp, R. M. Pitkin, E. A. Johnson, P. Stenmark, and M. Dong (2012)
J. Cell Sci. 125, 3233-3242
   Abstract »    Full Text »    PDF »
Tetanus Toxin and Botulinum Toxin A Utilize Unique Mechanisms To Enter Neurons of the Central Nervous System.
F. C. Blum, C. Chen, A. R. Kroken, and J. T. Barbieri (2012)
Infect. Immun. 80, 1662-1669
   Abstract »    Full Text »    PDF »
Beltless Translocation Domain of Botulinum Neurotoxin A Embodies a Minimum Ion-conductive Channel.
A. Fischer, S. Sambashivan, A. T. Brunger, and M. Montal (2012)
J. Biol. Chem. 287, 1657-1661
   Abstract »    Full Text »    PDF »
Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism.
C. B. Harper, S. Martin, T. H. Nguyen, S. J. Daniels, N. A. Lavidis, M. R. Popoff, G. Hadzic, A. Mariana, N. Chau, A. McCluskey, et al. (2011)
J. Biol. Chem. 286, 35966-35976
   Abstract »    Full Text »    PDF »
Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins.
M. A. Benson, Z. Fu, J.-J. P. Kim, and M. R. Baldwin (2011)
J. Biol. Chem. 286, 34015-34022
   Abstract »    Full Text »    PDF »
A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam.
A. L. Meehan, X. Yang, B. D. McAdams, L. Yuan, and S. M. Rothman (2011)
J Neurophysiol 106, 1227-1239
   Abstract »    Full Text »    PDF »
Novel Ganglioside-mediated Entry of Botulinum Neurotoxin Serotype D into Neurons.
A. R. Kroken, A. P.- A. Karalewitz, Z. Fu, J.-J. P. Kim, and J. T. Barbieri (2011)
J. Biol. Chem. 286, 26828-26837
   Abstract »    Full Text »    PDF »
Association of Botulinum Neurotoxin Serotype A Light Chain with Plasma Membrane-bound SNAP-25.
S. Chen and J. T. Barbieri (2011)
J. Biol. Chem. 286, 15067-15072
   Abstract »    Full Text »    PDF »
Evidence That Botulinum Toxin Receptors on Epithelial Cells and Neuronal Cells Are Not Identical: Implications for Development of a Non-Neurotropic Vaccine.
M. Elias, F. al-Saleem, D. M. Ancharski, A. Singh, Z. Nasser, R. M. Olson, and L. L. Simpson (2011)
J. Pharmacol. Exp. Ther. 336, 605-612
   Abstract »    Full Text »    PDF »
Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin.
C. Garcia-Rodriguez, I. N. Geren, J. Lou, F. Conrad, C. Forsyth, W. Wen, S. Chakraborti, H. Zao, G. Manzanarez, T. J. Smith, et al. (2011)
Protein Eng. Des. Sel. 24, 321-331
   Abstract »    Full Text »    PDF »
A Dileucine in the Protease of Botulinum Toxin A Underlies Its Long-lived Neuroparalysis: TRANSFER OF LONGEVITY TO A NOVEL POTENTIAL THERAPEUTIC.
J. Wang, T. H. Zurawski, J. Meng, G. Lawrence, W. M. Olango, D. P. Finn, L. Wheeler, and J. O. Dolly (2011)
J. Biol. Chem. 286, 6375-6385
   Abstract »    Full Text »    PDF »
SNARE tagging allows stepwise assembly of a multimodular medicinal toxin.
F. Darios, D. Niranjan, E. Ferrari, F. Zhang, M. Soloviev, A. Rummel, H. Bigalke, J. Suckling, Y. Ushkaryov, N. Naumenko, et al. (2010)
PNAS 107, 18197-18201
   Abstract »    Full Text »    PDF »
Excitatory Cholinergic and Purinergic Signaling in Bladder Are Equally Susceptible to Botulinum Neurotoxin A Consistent with Co-Release of Transmitters from Efferent Fibers.
G. W. Lawrence, K. R. Aoki, and J. O. Dolly (2010)
J. Pharmacol. Exp. Ther. 334, 1080-1086
   Abstract »    Full Text »    PDF »
Capsaicin Protects Mouse Neuromuscular Junctions from the Neuroparalytic Effects of Botulinum Neurotoxin A.
B. Thyagarajan, N. Krivitskaya, J. G. Potian, K. Hognason, C. C. Garcia, and J. J. McArdle (2009)
J. Pharmacol. Exp. Ther. 331, 361-371
   Abstract »    Full Text »    PDF »
Clostridium botulinum Toxin A Inhibits Contractility in Pregnant Human Myometrium In Vitro.
I. D. Burd, A. Ness, P. DiMuzio, G.-Y. Ren, and T. N. Tulenko (2009)
Reproductive Sciences 16, 1001-1004
   Abstract »    PDF »
Gangliosides as High Affinity Receptors for Tetanus Neurotoxin.
C. Chen, Z. Fu, J.-J. P. Kim, J. T. Barbieri, and M. R. Baldwin (2009)
J. Biol. Chem. 284, 26569-26577
   Abstract »    Full Text »    PDF »
Bivalent Recombinant Vaccine for Botulinum Neurotoxin Types A and B Based on a Polypeptide Comprising Their Effector and Translocation Domains That Is Protective against the Predominant A and B Subtypes.
C. Shone, H. Agostini, J. Clancy, M. Gu, H.-H. Yang, Y. Chu, V. Johnson, M. Taal, J. McGlashan, J. Brehm, et al. (2009)
Infect. Immun. 77, 2795-2801
   Abstract »    Full Text »    PDF »
Detection and Quantification of Botulinum Neurotoxin Type A by a Novel Rapid In Vitro Fluorimetric Assay.
H. Poras, T. Ouimet, S.-V. Orng, M.-C. Fournie-Zaluski, M. R. Popoff, and B. P. Roques (2009)
Appl. Envir. Microbiol. 75, 4382-4390
   Abstract »    Full Text »    PDF »
Engineering botulinum neurotoxin to extend therapeutic intervention.
S. Chen and J. T. Barbieri (2009)
PNAS 106, 9180-9184
   Abstract »    Full Text »    PDF »
Activation of TRPV1 Mediates Calcitonin Gene-Related Peptide Release, Which Excites Trigeminal Sensory Neurons and Is Attenuated by a Retargeted Botulinum Toxin with Anti-Nociceptive Potential.
J. Meng, S. V. Ovsepian, J. Wang, M. Pickering, A. Sasse, K. R. Aoki, G. W. Lawrence, and J. O. Dolly (2009)
J. Neurosci. 29, 4981-4992
   Abstract »    Full Text »    PDF »
A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation.
M. Holtje, S. Djalali, F. Hofmann, A. Munster-Wandowski, S. Hendrix, F. Boato, S. C. Dreger, G. Grosse, C. Henneberger, R. Grantyn, et al. (2009)
FASEB J 23, 1115-1126
   Abstract »    Full Text »    PDF »
Bimodal modulation of the botulinum neurotoxin protein-conducting channel.
A. Fischer, Y. Nakai, L. M. Eubanks, C. M. Clancy, W. H. Tepp, S. Pellett, T. J. Dickerson, E. A. Johnson, K. D. Janda, and M. Montal (2009)
PNAS 106, 1330-1335
   Abstract »    Full Text »    PDF »
SV2 Renders Primed Synaptic Vesicles Competent for Ca2+-Induced Exocytosis.
W.-P. Chang and T. C. Sudhof (2009)
J. Neurosci. 29, 883-897
   Abstract »    Full Text »    PDF »
Glycosylated SV2A and SV2B Mediate the Entry of Botulinum Neurotoxin E into Neurons.
M. Dong, H. Liu, W. H. Tepp, E. A. Johnson, R. Janz, and E. R. Chapman (2008)
Mol. Biol. Cell 19, 5226-5237
   Abstract »    Full Text »    PDF »
Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A.
A. A. Rogozhin, K. K. Pang, E. Bukharaeva, C. Young, and C. R. Slater (2008)
J. Physiol. 586, 3163-3182
   Abstract »    Full Text »    PDF »
Novel Chimeras of Botulinum Neurotoxins A and E Unveil Contributions from the Binding, Translocation, and Protease Domains to Their Functional Characteristics.
J. Wang, J. Meng, G. W. Lawrence, T. H. Zurawski, A. Sasse, M. O. Bodeker, M. A. Gilmore, E. Fernandez-Salas, J. Francis, L. E. Steward, et al. (2008)
J. Biol. Chem. 283, 16993-17002
   Abstract »    Full Text »    PDF »
Long-Distance Retrograde Effects of Botulinum Neurotoxin A.
F. Antonucci, C. Rossi, L. Gianfranceschi, O. Rossetto, and M. Caleo (2008)
J. Neurosci. 28, 3689-3696
   Abstract »    Full Text »    PDF »
Subunit Vaccine against the Seven Serotypes of Botulism.
M. R. Baldwin, W. H. Tepp, A. Przedpelski, C. L. Pier, M. Bradshaw, E. A. Johnson, and J. T. Barbieri (2008)
Infect. Immun. 76, 1314-1318
   Abstract »    Full Text »    PDF »
Molecular Architecture of Botulinum Neurotoxin E Revealed by Single Particle Electron Microscopy.
A. Fischer, C. Garcia-Rodriguez, I. Geren, J. Lou, J. D. Marks, T. Nakagawa, and M. Montal (2008)
J. Biol. Chem. 283, 3997-4003
   Abstract »    Full Text »    PDF »
Recombinant Holotoxoid Vaccine against Botulism.
C. L. Pier, W. H. Tepp, M. Bradshaw, E. A. Johnson, J. T. Barbieri, and M. R. Baldwin (2008)
Infect. Immun. 76, 437-442
   Abstract »    Full Text »    PDF »
Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons.
M. Dong, W. H. Tepp, H. Liu, E. A. Johnson, and E. R. Chapman (2007)
J. Cell Biol. 179, 1511-1522
   Abstract »    Full Text »    PDF »
Crucial Role of the Disulfide Bridge between Botulinum Neurotoxin Light and Heavy Chains in Protease Translocation across Membranes.
A. Fischer and M. Montal (2007)
J. Biol. Chem. 282, 29604-29611
   Abstract »    Full Text »    PDF »
Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
J. Meng, J. Wang, G. Lawrence, and J. O. Dolly (2007)
J. Cell Sci. 120, 2864-2874
   Abstract »    Full Text »    PDF »
Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes.
A. Fischer and M. Montal (2007)
PNAS 104, 10447-10452
   Abstract »    Full Text »    PDF »
Primary Cultures of Embryonic Chicken Neurons for Sensitive Cell-Based Assay of Botulinum Neurotoxin: Implications for Therapeutic Discovery.
A. M. Stahl, G. Ruthel, E. Torres-Melendez, T. A. Kenny, R. G. Panchal, and S. Bavari (2007)
J Biomol Screen 12, 370-377
   Abstract »    PDF »
Inhibition of Metalloprotease Botulinum Serotype A from a Pseudo-peptide Binding Mode to a Small Molecule That Is Active in Primary Neurons.
J. C. Burnett, G. Ruthel, C. M. Stegmann, R. G. Panchal, T. L. Nguyen, A. R. Hermone, R. G. Stafford, D. J. Lane, T. A. Kenny, C. F. McGrath, et al. (2007)
J. Biol. Chem. 282, 5004-5014
   Abstract »    Full Text »    PDF »
Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept.
A. Rummel, T. Eichner, T. Weil, T. Karnath, A. Gutcaits, S. Mahrhold, K. Sandhoff, R. L. Proia, K. R. Acharya, H. Bigalke, et al. (2007)
PNAS 104, 359-364
   Abstract »    Full Text »    PDF »
Two Protein Trafficking Processes at Motor Nerve Endings Unveiled by Botulinum Neurotoxin E.
G. Lawrence, J. Wang, C. K. N. K. Chion, K. R. Aoki, and J. O. Dolly (2007)
J. Pharmacol. Exp. Ther. 320, 410-418
   Abstract »    Full Text »    PDF »
Entering neurons: botulinum toxins and synaptic vesicle recycling.
C. Verderio, O. Rossetto, C. Grumelli, C. Frassoni, C. Montecucco, and M. Matteoli (2006)
EMBO Rep. 7, 995-999
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
Physiology 21, 229-232
   Full Text »    PDF »
Neuroscience. A neuronal receptor for botulinum toxin..
R. Jahn (2006)
Science 312, 540-541
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882