Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 312 (5775): 914-918

Copyright © 2006 by the American Association for the Advancement of Science

PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux

Jan Petrásek,1,2 Jozef Mravec,3 Rodolphe Bouchard,4 Joshua J. Blakeslee,5 Melinda Abas,6 Daniela Seifertová,1,2,3 Justyna Wisniewska,3,7 Zerihun Tadele,8 Martin Kubes,1,2 Milada Covanová,1,2 Pankaj Dhonukshe,3 Petr Skupa,1,2 Eva Benková,3 Lucie Perry,1 Pavel Krecek,1,2 Ok Ran Lee,5 Gerald R. Fink,9 Markus Geisler,4 Angus S. Murphy,5 Christian Luschnig,6 Eva Zazímalová,1* Jirí Friml3,10

Abstract: Intercellular flow of the phytohormone auxin underpins multiple developmental processes in plants. Plant-specific pin-formed (PIN) proteins and several phosphoglycoprotein (PGP) transporters are crucial factors in auxin transport–related development, yet the molecular function of PINs remains unknown. Here, we show that PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. Conditional gain-of-function alleles and quantitative measurements of auxin accumulation in Arabidopsis and tobacco cultured cells revealed that the action of PINs in auxin efflux is distinct from PGP, rate-limiting, specific to auxins, and sensitive to auxin transport inhibitors. This suggests a direct involvement of PINs in catalyzing cellular auxin efflux.

1 Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.
2 Department of Plant Physiology, Faculty of Science, Charles University, 128 44 Prague 2, Czech Republic.
3 Center for Plant Molecular Biology (ZMBP), University Tübingen, D-72076 Tübingen, Germany.
4 Zurich-Basel Plant Science Center, University of Zurich, Institute of Plant Biology, CH 8007 Zurich, Switzerland.
5 Department of Horticulture, Purdue University, West Lafayette, IN 47907, USA.
6 Institute for Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences–Universität für Bodenkultur, A-1190 Wien, Austria.
7 Department of Biotechnology, Institute of General and Molecular Biology, 87-100 Torun, Poland.
8 Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.
9 Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
10 Masaryk University, Department of Functional Genomics and Proteomics, Laboratory of Molecular Plant Physiology, Kamenice 5, 625 00 Brno, Czech Republic.

* To whom correspondence should be addressed. E-mail: eva.zazim{at}

Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane.
J. Kleine-Vehn, K. Wabnik, A. Martiniere, Łukasz Łangowski, K. Willig, S. Naramoto, J. Leitner, H. Tanaka, S. Jakobs, S. Robert, et al. (2014)
Mol Syst Biol 7, 540
   Abstract »    Full Text »    PDF »
Modelling and experimental analysis of hormonal crosstalk in Arabidopsis.
J. Liu, S. Mehdi, J. Topping, P. Tarkowski, and K. Lindsey (2014)
Mol Syst Biol 6, 373
   Abstract »    Full Text »    PDF »
Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling.
K. Wabnik, J. Kleine-Vehn, J. Balla, M. Sauer, S. Naramoto, V. Reinohl, R. M. H. Merks, W. Govaerts, and J. Friml (2014)
Mol Syst Biol 6, 447
   Abstract »    Full Text »    PDF »
VAN4 Encodes a Putative TRS120 That is Required for Normal Cell Growth and Vein Development in Arabidopsis.
S. Naramoto, T. Nodzyłski, T. Dainobu, H. Takatsuka, T. Okada, J. Friml, and H. Fukuda (2014)
Plant Cell Physiol. 55, 750-763
   Abstract »    Full Text »    PDF »
Polar delivery in plants; commonalities and differences to animal epithelial cells.
U. Kania, M. Fendrych, and J. Friml (2014)
Open Bio 4, 140017
   Abstract »    Full Text »    PDF »
Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning.
R. Ursache, S. Miyashima, Q. Chen, A. Vaten, K. Nakajima, A. Carlsbecker, Y. Zhao, Y. Helariutta, and J. Dettmer (2014)
Development 141, 1250-1259
   Abstract »    Full Text »    PDF »
Perturbation of Auxin Homeostasis Caused by Mitochondrial FtSH4 Gene-Mediated Peroxidase Accumulation Regulates Arabidopsis Architecture.
S. Zhang, J. Wu, D. Yuan, D. Zhang, Z. Huang, L. Xiao, and C. Yang (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
Retromer Subunits VPS35A and VPS29 Mediate Prevacuolar Compartment (PVC) Function in Arabidopsis.
T. Nodzynski, M. I. Feraru, S. Hirsch, R. De Rycke, C. Niculaes, W. Boerjan, J. Van Leene, G. De Jaeger, S. Vanneste, and J. Friml (2013)
Mol Plant 6, 1849-1862
   Abstract »    Full Text »    PDF »
ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation.
Y. Boutte, K. Jonsson, H. E. McFarlane, E. Johnson, D. Gendre, R. Swarup, J. Friml, L. Samuels, S. Robert, and R. P. Bhalerao (2013)
PNAS 110, 16259-16264
   Abstract »    Full Text »    PDF »
Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid.
A. Pencik, B. Simonovik, S. V. Petersson, E. Henykova, S. Simon, K. Greenham, Y. Zhang, M. Kowalczyk, M. Estelle, E. Zazimalova, et al. (2013)
PLANT CELL 25, 3858-3870
   Abstract »    Full Text »    PDF »
Polar auxin transport: models and mechanisms.
K. van Berkel, R. J. de Boer, B. Scheres, and K. ten Tusscher (2013)
Development 140, 2253-2268
   Abstract »    Full Text »    PDF »
Auxin and self-organization at the shoot apical meristem.
M. Sassi and T. Vernoux (2013)
J. Exp. Bot. 64, 2579-2592
   Abstract »    Full Text »    PDF »
A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis.
E. Remy, T. R. Cabrito, P. Baster, R. A. Batista, M. C. Teixeira, J. Friml, I. Sa-Correia, and P. Duque (2013)
PLANT CELL 25, 901-926
   Abstract »    Full Text »    PDF »
Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism.
C. Lofke, M. Zwiewka, I. Heilmann, M. C. E. Van Montagu, T. Teichmann, and J. Friml (2013)
PNAS 110, 3627-3632
   Abstract »    Full Text »    PDF »
Clathrin Light Chains Regulate Clathrin-Mediated Trafficking, Auxin Signaling, and Development in Arabidopsis.
C. Wang, X. Yan, Q. Chen, N. Jiang, W. Fu, B. Ma, J. Liu, C. Li, S. Y. Bednarek, and J. Pan (2013)
PLANT CELL 25, 499-516
   Abstract »    Full Text »    PDF »
SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism.
P. Baster, S. Robert, J. Kleine-Vehn, S. Vanneste, U. Kania, W. Grunewald, B. De Rybel, T. Beeckman, and J. Friml (2013)
EMBO J. 32, 260-274
   Abstract »    Full Text »    PDF »
Diverting the downhill flow of auxin to steer growth during tropisms.
E. P. Spalding (2013)
Am. J. Botany 100, 203-214
   Abstract »    Full Text »    PDF »
Gravity Sensing and Signal Transduction in Vascular Plant Primary Roots.
K. L. Baldwin, A. K. Strohm, and P. H. Masson (2013)
Am. J. Botany 100, 126-142
   Abstract »    Full Text »    PDF »
Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors.
A. Rosado, R. Li, W. van de Ven, E. Hsu, and N. V. Raikhel (2012)
PNAS 109, 19537-19544
   Abstract »    Full Text »    PDF »
Plant developmental biologists meet on stairways in Matera.
T. Beeckman and J. Friml (2012)
Development 139, 3677-3682
   Abstract »    Full Text »    PDF »
Spatio-Temporal Cellular Dynamics of the Arabidopsis Flagellin Receptor Reveal Activation Status-Dependent Endosomal Sorting.
M. Beck, J. Zhou, C. Faulkner, D. MacLean, and S. Robatzek (2012)
PLANT CELL 24, 4205-4219
   Abstract »    Full Text »    PDF »
The Role of PIN Auxin Efflux Carriers in Polar Auxin Transport and Accumulation and Their Effect on Shaping Maize Development.
C. Forestan and S. Varotto (2012)
Mol Plant 5, 787-798
   Abstract »    Full Text »    PDF »
Cellular Auxin Homeostasis: Gatekeeping Is Housekeeping.
M. Ruiz Rosquete, E. Barbez, and J. Kleine-Vehn (2012)
Mol Plant 5, 772-786
   Abstract »    Full Text »    PDF »
Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance.
V. V. Mironova, N. A. Omelyanchuk, E. S. Novoselova, A. V. Doroshkov, F. V. Kazantsev, A. V. Kochetov, N. A. Kolchanov, E. Mjolsness, and V. A. Likhoshvai (2012)
Ann. Bot. 110, 349-360
   Abstract »    Full Text »    PDF »
BEX5/RabA1b Regulates trans-Golgi Network-to-Plasma Membrane Protein Trafficking in Arabidopsis.
E. Feraru, M. I. Feraru, R. Asaoka, T. Paciorek, R. De Rycke, H. Tanaka, A. Nakano, and J. Friml (2012)
PLANT CELL 24, 3074-3086
   Abstract »    Full Text »    PDF »
AUX/LAX Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during Arabidopsis Development.
B. Peret, K. Swarup, A. Ferguson, M. Seth, Y. Yang, S. Dhondt, N. James, I. Casimiro, P. Perry, A. Syed, et al. (2012)
PLANT CELL 24, 2874-2885
   Abstract »    Full Text »    PDF »
Poplar Extrafloral Nectaries: Two Types, Two Strategies of Indirect Defenses against Herbivores.
M. Escalante-Perez, M. Jaborsky, S. Lautner, J. Fromm, T. Muller, M. Dittrich, M. Kunert, W. Boland, R. Hedrich, and P. Ache (2012)
Plant Physiology 159, 1176-1191
   Abstract »    Full Text »    PDF »
Auxin transport at cellular level: new insights supported by mathematical modelling.
P. Hosek, M. Kubes, M. Lankova, P. I. Dobrev, P. Klima, M. Kohoutova, J. Petrasek, K. Hoyerova, M. Jirina, and E. Zazimalova (2012)
J. Exp. Bot. 63, 3815-3827
   Abstract »    Full Text »    PDF »
A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in Arabidopsis.
M. Dai, C. Zhang, U. Kania, F. Chen, Q. Xue, T. Mccray, G. Li, G. Qin, M. Wakeley, W. Terzaghi, et al. (2012)
PLANT CELL 24, 2497-2514
   Abstract »    Full Text »    PDF »
Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.
J. Leitner, J. Petrasek, K. Tomanov, K. Retzer, M. Parezova, B. Korbei, A. Bachmair, E. Zazimalova, and C. Luschnig (2012)
PNAS 109, 8322-8327
   Abstract »    Full Text »    PDF »
YUCCA Genes Are Expressed in Response to Leaf Adaxial-Abaxial Juxtaposition and Are Required for Leaf Margin Development.
W. Wang, B. Xu, H. Wang, J. Li, H. Huang, and L. Xu (2011)
Plant Physiology 157, 1805-1819
   Abstract »    Full Text »    PDF »
Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress.
Q. Zhang, F. A. Pettolino, K. S. Dhugga, J. A. Rafalski, S. Tingey, J. Taylor, N. J. Shirley, K. Hayes, M. Beatty, S. R. Abrams, et al. (2011)
Plant Physiology 156, 2155-2171
   Abstract »    Full Text »    PDF »
AUXIN UP-REGULATED F-BOX PROTEIN1 Regulates the Cross Talk between Auxin Transport and Cytokinin Signaling during Plant Root Growth.
X. Zheng, N. D. Miller, D. R. Lewis, M. J. Christians, K.-H. Lee, G. K. Muday, E. P. Spalding, and R. D. Vierstra (2011)
Plant Physiology 156, 1878-1893
   Abstract »    Full Text »    PDF »
Is ABP1 an Auxin Receptor Yet?.
J.-H. Shi and Z.-B. Yang (2011)
Mol Plant 4, 635-640
   Abstract »    Full Text »    PDF »
AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction?.
G. F. E. Scherer (2011)
J. Exp. Bot. 62, 3339-3357
   Abstract »    Full Text »    PDF »
M. Sauer and J. Kleine-Vehn (2011)
PLANT CELL 23, 2033-2043
   Abstract »    Full Text »    PDF »
Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport-Dependent Growth and Development in Arabidopsis thaliana.
B. C. Willige, E. Isono, R. Richter, M. Zourelidou, and C. Schwechheimer (2011)
PLANT CELL 23, 2184-2195
   Abstract »    Full Text »    PDF »
Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers.
M. Furutani, N. Sakamoto, S. Yoshida, T. Kajiwara, H. S. Robert, J. Friml, and M. Tasaka (2011)
Development 138, 2069-2078
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis.
S. Kitakura, S. Vanneste, S. Robert, C. Lofke, T. Teichmann, H. Tanaka, and J. Friml (2011)
PLANT CELL 23, 1920-1931
   Abstract »    Full Text »    PDF »
A Negative Effector of Blue Light-Induced and Gravitropic Bending in Arabidopsis.
T. Knauer, M. Dummer, F. Landgraf, and C. Forreiter (2011)
Plant Physiology 156, 439-447
   Abstract »    Full Text »    PDF »
The Novel Cyst Nematode Effector Protein 19C07 Interacts with the Arabidopsis Auxin Influx Transporter LAX3 to Control Feeding Site Development.
C. Lee, D. Chronis, C. Kenning, B. Peret, T. Hewezi, E. L. Davis, T. J. Baum, R. Hussey, M. Bennett, and M. G. Mitchum (2011)
Plant Physiology 155, 866-880
   Abstract »    Full Text »    PDF »
Unraveling the Evolution of Auxin Signaling.
I. De Smet, U. Voss, S. Lau, M. Wilson, N. Shao, R. E. Timme, R. Swarup, I. Kerr, C. Hodgman, R. Bock, et al. (2011)
Plant Physiology 155, 209-221
   Abstract »    Full Text »    PDF »
Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells.
J. Kleine-Vehn, Z. Ding, A. R. Jones, M. Tasaka, M. T. Morita, and J. Friml (2010)
PNAS 107, 22344-22349
   Abstract »    Full Text »    PDF »
ADP-ribosylation factor machinery mediates endocytosis in plant cells.
S. Naramoto, J. Kleine-Vehn, S. Robert, M. Fujimoto, T. Dainobu, T. Paciorek, T. Ueda, A. Nakano, M. C. E. Van Montagu, H. Fukuda, et al. (2010)
PNAS 107, 21890-21895
   Abstract »    Full Text »    PDF »
ABI4 Mediates Abscisic Acid and Cytokinin Inhibition of Lateral Root Formation by Reducing Polar Auxin Transport in Arabidopsis.
D. Shkolnik-Inbar and D. Bar-Zvi (2010)
PLANT CELL 22, 3560-3573
   Abstract »    Full Text »    PDF »
Endoplasmic Reticulum: The Rising Compartment in Auxin Biology.
J. Friml and A. R. Jones (2010)
Plant Physiology 154, 458-462
   Full Text »    PDF »
The ER-Localized TWD1 Immunophilin Is Necessary for Localization of Multidrug Resistance-Like Proteins Required for Polar Auxin Transport in Arabidopsis Roots.
G. Wu, M. S. Otegui, and E. P. Spalding (2010)
PLANT CELL 22, 3295-3304
   Abstract »    Full Text »    PDF »
The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells.
W. Grunewald and J. Friml (2010)
EMBO J. 29, 2700-2714
   Abstract »    Full Text »    PDF »
Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells.
M. Lankova, R. S. Smith, B. Pesek, M. Kubes, E. Zazimalova, J. Petrasek, and K. Hoyerova (2010)
J. Exp. Bot. 61, 3589-3598
   Abstract »    Full Text »    PDF »
The AP-3 {beta} Adaptin Mediates the Biogenesis and Function of Lytic Vacuoles in Arabidopsis.
E. Feraru, T. Paciorek, M. I. Feraru, M. Zwiewka, R. De Groodt, R. De Rycke, J. Kleine-Vehn, and J. Friml (2010)
PLANT CELL 22, 2812-2824
   Abstract »    Full Text »    PDF »
Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics.
J.-Y. Kim, S. Henrichs, A. Bailly, V. Vincenzetti, V. Sovero, S. Mancuso, S. Pollmann, D. Kim, M. Geisler, and H.-G. Nam (2010)
J. Biol. Chem. 285, 23309-23317
   Abstract »    Full Text »    PDF »
Differential Auxin-Transporting Activities of PIN-FORMED Proteins in Arabidopsis Root Hair Cells.
A. Ganguly, S. H. Lee, M. Cho, O. R. Lee, H. Yoo, and H.-T. Cho (2010)
Plant Physiology 153, 1046-1061
   Abstract »    Full Text »    PDF »
Auxin regulates distal stem cell differentiation in Arabidopsis roots.
Z. Ding and J. Friml (2010)
PNAS 107, 12046-12051
   Abstract »    Full Text »    PDF »
Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid.
K. Ruzicka, L. C. Strader, A. Bailly, H. Yang, J. Blakeslee, L. Langowski, E. Nejedla, H. Fujita, H. Itoh, K. Syono, et al. (2010)
PNAS 107, 10749-10753
   Abstract »    Full Text »    PDF »
Auxin Control of Root Development.
P. Overvoorde, H. Fukaki, and T. Beeckman (2010)
Cold Spring Harb Perspect Biol 2, a001537
   Abstract »    Full Text »    PDF »
Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.
J. Palovaara, H. Hallberg, C. Stasolla, B. Luit, and I. Hakman (2010)
Tree Physiol 30, 479-489
   Abstract »    Full Text »    PDF »
ZmPIN1-Mediated Auxin Transport Is Related to Cellular Differentiation during Maize Embryogenesis and Endosperm Development.
C. Forestan, S. Meda, and S. Varotto (2010)
Plant Physiology 152, 1373-1390
   Abstract »    Full Text »    PDF »
Auxin Transporters--Why So Many?.
E. Zazimalova, A. S. Murphy, H. Yang, K. Hoyerova, and P. Hosek (2010)
Cold Spring Harb Perspect Biol 2, a001552
   Abstract »    Full Text »    PDF »
The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings.
F. Vandenbussche, J. Petrasek, P. Zadnikova, K. Hoyerova, B. Pesek, V. Raz, R. Swarup, M. Bennett, E. Zazimalova, E. Benkova, et al. (2010)
Development 137, 597-606
   Abstract »    Full Text »    PDF »
Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.
P. Zadnikova, J. Petrasek, P. Marhavy, V. Raz, F. Vandenbussche, Z. Ding, K. Schwarzerova, M. T. Morita, M. Tasaka, J. Hejatko, et al. (2010)
Development 137, 607-617
   Abstract »    Full Text »    PDF »
The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana.
Y. Ugartechea-Chirino, R. Swarup, K. Swarup, B. Peret, M. Whitworth, M. Bennett, and S. Bougourd (2010)
Ann. Bot. 105, 277-289
   Abstract »    Full Text »    PDF »
PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport.
J. Zhang, T. Nodzynski, A. Pencik, J. Rolcik, and J. Friml (2010)
PNAS 107, 918-922
   Abstract »    Full Text »    PDF »
Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides.
K. Yamada, Y. Osakabe, J. Mizoi, K. Nakashima, Y. Fujita, K. Shinozaki, and K. Yamaguchi-Shinozaki (2010)
J. Biol. Chem. 285, 1138-1146
   Abstract »    Full Text »    PDF »
PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in Arabidopsis.
J. Kleine-Vehn, F. Huang, S. Naramoto, J. Zhang, M. Michniewicz, R. Offringa, and J. Friml (2009)
PLANT CELL 21, 3839-3849
   Abstract »    Full Text »    PDF »
Arabidopsis N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein-Mediated Pathway.
Y. Mudgil, J. F. Uhrig, J. Zhou, B. Temple, K. Jiang, and A. M. Jones (2009)
PLANT CELL 21, 3591-3609
   Abstract »    Full Text »    PDF »
Symmetry Breaking in Plants: Molecular Mechanisms Regulating Asymmetric Cell Divisions in Arabidopsis.
J. J. Petricka, J. M. Van Norman, and P. N. Benfey (2009)
Cold Spring Harb Perspect Biol 1, a000497
   Abstract »    Full Text »    PDF »
NO VEIN Mediates Auxin-Dependent Specification and Patterning in the Arabidopsis Embryo, Shoot, and Root.
R. Tsugeki, F. A. Ditengou, Y. Sumi, W. Teale, K. Palme, and K. Okada (2009)
PLANT CELL 21, 3133-3151
   Abstract »    Full Text »    PDF »
Auxin patterns Solanum lycopersicum leaf morphogenesis.
D. Koenig, E. Bayer, J. Kang, C. Kuhlemeier, and N. Sinha (2009)
Development 136, 2997-3006
   Abstract »    Full Text »    PDF »
Manipulation of Auxin Transport in Plant Roots during Rhizobium Symbiosis and Nematode Parasitism.
W. Grunewald, G. van Noorden, G. Van Isterdael, T. Beeckman, G. Gheysen, and U. Mathesius (2009)
PLANT CELL 21, 2553-2562
   Abstract »    Full Text »    PDF »
Auxin Stimulates Its Own Transport by Shaping Actin Filaments.
P. Nick, M.-J. Han, and G. An (2009)
Plant Physiology 151, 155-167
   Abstract »    Full Text »    PDF »
Auxin transport routes in plant development.
J. Petrasek and J. Friml (2009)
Development 136, 2675-2688
   Abstract »    Full Text »    PDF »
Vacuolar SNAREs Function in the Formation of the Leaf Vascular Network by Regulating Auxin Distribution.
M. Shirakawa, H. Ueda, T. Shimada, C. Nishiyama, and I. Hara-Nishimura (2009)
Plant Cell Physiol. 50, 1319-1328
   Abstract »    Full Text »    PDF »
An Auxin Gradient and Maximum in the Arabidopsis Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis.
S. V. Petersson, A. I. Johansson, M. Kowalczyk, A. Makoveychuk, J. Y. Wang, T. Moritz, M. Grebe, P. N. Benfey, G. Sandberg, and K. Ljung (2009)
PLANT CELL 21, 1659-1668
   Abstract »    Full Text »    PDF »
Studies of aberrant phyllotaxy1 Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem.
B.-h. Lee, R. Johnston, Y. Yang, A. Gallavotti, M. Kojima, B. A.N. Travencolo, L. d. F. Costa, H. Sakakibara, and D. Jackson (2009)
Plant Physiology 150, 205-216
   Abstract »    Full Text »    PDF »
A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium.
A. Hoshi, K. Oshima, S. Kakizawa, Y. Ishii, J. Ozeki, M. Hashimoto, K. Komatsu, S. Kagiwada, Y. Yamaji, and S. Namba (2009)
PNAS 106, 6416-6421
   Abstract »    Full Text »    PDF »
Meristematic sculpting in fruit development.
T. Girin, K. Sorefan, and L. Ostergaard (2009)
J. Exp. Bot. 60, 1493-1502
   Abstract »    Full Text »    PDF »
The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.
I. Hakman, H. Hallberg, and J. Palovaara (2009)
Tree Physiol 29, 483-496
   Abstract »    Full Text »    PDF »
Cytokinin regulates root meristem activity via modulation of the polar auxin transport.
K. Ruzicka, M. Simaskova, J. Duclercq, J. Petrasek, E. Zazimalova, S. Simon, J. Friml, M. C. E. Van Montagu, and E. Benkova (2009)
PNAS 106, 4284-4289
   Abstract »    Full Text »    PDF »
Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux.
M. Pernisova, P. Klima, J. Horak, M. Valkova, J. Malbeck, P. Soucek, P. Reichman, K. Hoyerova, J. Dubova, J. Friml, et al. (2009)
PNAS 106, 3609-3614
   Abstract »    Full Text »    PDF »
Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition.
B. Titapiwatanakun and A. S. Murphy (2009)
J. Exp. Bot. 60, 1093-1107
   Abstract »    Full Text »    PDF »
BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development.
A. Skirpan, A. H. Culler, A. Gallavotti, D. Jackson, J. D. Cohen, and P. McSteen (2009)
Plant Cell Physiol. 50, 652-657
   Abstract »    Full Text »    PDF »
The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana.
M. Zourelidou, I. Muller, B. C. Willige, C. Nill, Y. Jikumaru, H. Li, and C. Schwechheimer (2009)
Development 136, 627-636
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase SCFTIR1/AFB and Membrane Sterols Play Key Roles in Auxin Regulation of Endocytosis, Recycling, and Plasma Membrane Accumulation of the Auxin Efflux Transporter PIN2 in Arabidopsis thaliana.
J. Pan, S. Fujioka, J. Peng, J. Chen, G. Li, and R. Chen (2009)
PLANT CELL 21, 568-580
   Abstract »    Full Text »    PDF »
Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting.
J. Kleine-Vehn, J. Leitner, M. Zwiewka, M. Sauer, L. Abas, C. Luschnig, and J. Friml (2008)
PNAS 105, 17812-17817
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882