Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 312 (5775): 924-927

Copyright © 2006 by the American Association for the Advancement of Science

Ischemia Opens Neuronal Gap Junction Hemichannels

Roger J. Thompson, Ning Zhou, Brian A. MacVicar*

Abstract: Neuronal excitotoxicity during stroke is caused by activation of unidentified large-conductance channels, leading to swelling and calcium dysregulation. We show that ischemic-like conditions [O2/glucose deprivation (OGD)] open hemichannels, or half gap junctions, in neurons. Hemichannel opening was indicated by a large linear current and flux across the membrane of small fluorescent molecules. Single-channel openings of hemichannels (530 picosiemens) were observed in OGD. Both the current and dye flux were blocked by inhibitors of hemichannels. Therefore, hemichannel opening contributes to the profound ionic dysregulation during stroke and may be a ubiquitous component of ischemic neuronal death.

Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.

* To whom correspondence should be addressed. E-mail: bmacvica{at}interchange.ubc.ca


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Purinergic control of AMPK activation by ATP released through connexin 43 hemichannels - pivotal roles in hemichannel-mediated cell injury.
Y. Chi, K. Gao, K. Li, S. Nakajima, S. Kira, M. Takeda, and J. Yao (2014)
J. Cell Sci. 127, 1487-1499
   Abstract »    Full Text »    PDF »
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall.
M. Billaud, A. W. Lohman, S. R. Johnstone, L. A. Biwer, S. Mutchler, and B. E. Isakson (2014)
Pharmacol. Rev. 66, 513-569
   Abstract »    Full Text »    PDF »
The food dye FD&C Blue No. 1 is a selective inhibitor of the ATP release channel Panx1.
J. Wang, D. G. Jackson, and G. Dahl (2013)
J. Gen. Physiol. 141, 649-656
   Abstract »    Full Text »    PDF »
Spreading Depression Triggers Headache by Activating Neuronal Panx1 Channels.
H. Karatas, S. E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Kocak, Z. D. Sen, and T. Dalkara (2013)
Science 339, 1092-1095
   Abstract »    Full Text »    PDF »
DCPIB, the Proposed Selective Blocker of Volume-Regulated Anion Channels, Inhibits Several Glutamate Transport Pathways in Glial Cells.
N. H. Bowens, P. Dohare, Y.-H. Kuo, and A. A. Mongin (2013)
Mol. Pharmacol. 83, 22-32
   Abstract »    Full Text »    PDF »
Pannexin1 contributes to pathophysiological ATP release in lipoapoptosis induced by saturated free fatty acids in liver cells.
F. Xiao, S. L. Waldrop, A.-k. Khimji, and G. Kilic (2012)
Am J Physiol Cell Physiol 303, C1034-C1044
   Abstract »    Full Text »    PDF »
Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells.
M. R. Islam, H. Uramoto, T. Okada, R. Z. Sabirov, and Y. Okada (2012)
Am J Physiol Cell Physiol 303, C924-C935
   Abstract »    Full Text »    PDF »
Anoxia-Induced NMDA Receptor Activation Opens Pannexin Channels via Src Family Kinases.
N. L. Weilinger, P. L. Tang, and R. J. Thompson (2012)
J. Neurosci. 32, 12579-12588
   Abstract »    Full Text »    PDF »
Loss of Pannexin 1 Attenuates Melanoma Progression by Reversion to a Melanocytic Phenotype.
S. Penuela, L. Gyenis, A. Ablack, J. M. Churko, A. C. Berger, D. W. Litchfield, J. D. Lewis, and D. W. Laird (2012)
J. Biol. Chem. 287, 29184-29193
   Abstract »    Full Text »    PDF »
An intercellular pathway for glucose transport into mouse oocytes.
Q. Wang, M. M. Chi, T. Schedl, and K. H. Moley (2012)
Am J Physiol Endocrinol Metab 302, E1511-E1518
   Abstract »    Full Text »    PDF »
Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells.
Z. Sun, M. L. Risner, J. B. van Asselt, D.-Q. Zhang, M. Kamermans, and D. G. McMahon (2012)
J Neurophysiol 107, 2624-2632
   Abstract »    Full Text »    PDF »
Examining protection from anoxic depolarization by the drugs dibucaine and carbetapentane using whole cell recording from CA1 neurons.
S. H. White, C. D. Brisson, and R. D. Andrew (2012)
J Neurophysiol 107, 2083-2095
   Abstract »    Full Text »    PDF »
In Vivo Labeling of Cortical Astrocytes with Sulforhodamine 101 (SR101).
A. Nimmerjahn and F. Helmchen (2012)
Cold Spring Harb Protoc 2012, pdb.prot068155
   Abstract »    Full Text »    PDF »
Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release.
D. Li, K. Herault, E. Y. Isacoff, M. Oheim, and N. Ropert (2012)
J. Physiol. 590, 855-873
   Abstract »    Full Text »    PDF »
Green Fluorescent Protein Changes the Conductance of Connexin 43 (Cx43) Hemichannels Reconstituted in Planar Lipid Bilayers.
C. Carnarius, M. Kreir, M. Krick, C. Methfessel, V. Moehrle, O. Valerius, A. Bruggemann, C. Steinem, and N. Fertig (2012)
J. Biol. Chem. 287, 2877-2886
   Abstract »    Full Text »    PDF »
Pannexins in ischemia-induced neurodegeneration.
P. Bargiotas, A. Krenz, S. G. Hormuzdi, D. A. Ridder, A. Herb, W. Barakat, S. Penuela, J. von Engelhardt, H. Monyer, and M. Schwaninger (2011)
PNAS 108, 20772-20777
   Abstract »    Full Text »    PDF »
Connexins: Key Mediators of Endocrine Function.
D. Bosco, J.-A. Haefliger, and P. Meda (2011)
Physiol Rev 91, 1393-1445
   Abstract »    Full Text »    PDF »
Pathways Regulating the Trafficking and Turnover of Pannexin1 Protein and the Role of the C-terminal Domain.
R. Gehi, Q. Shao, and D. W. Laird (2011)
J. Biol. Chem. 286, 27639-27653
   Abstract »    Full Text »    PDF »
Potent inhibition of anoxic depolarization by the sodium channel blocker dibucaine.
H. A. Douglas, J. K. Callaway, J. Sword, S. A. Kirov, and R. D. Andrew (2011)
J Neurophysiol 105, 1482-1494
   Abstract »    Full Text »    PDF »
Amyloid {beta}-Induced Death in Neurons Involves Glial and Neuronal Hemichannels.
J. A. Orellana, K. F. Shoji, V. Abudara, P. Ezan, E. Amigou, P. J. Saez, J. X. Jiang, C. C. Naus, J. C. Saez, and C. Giaume (2011)
J. Neurosci. 31, 4962-4977
   Abstract »    Full Text »    PDF »
Acute Functional Neurotoxicity of Lanthanum(III) in Primary Cortical Networks.
A. Gramowski, K. Jugelt, O. H.- U. Schroder, D. G. Weiss, and S. Mitzner (2011)
Toxicol. Sci. 120, 173-183
   Abstract »    Full Text »    PDF »
Neuroinflammation Leads to Region-Dependent Alterations in Astrocyte Gap Junction Communication and Hemichannel Activity.
N. Karpuk, M. Burkovetskaya, T. Fritz, A. Angle, and T. Kielian (2011)
J. Neurosci. 31, 414-425
   Abstract »    Full Text »    PDF »
Electrical Synapses Control Hippocampal Contributions to Fear Learning and Memory.
S. Bissiere, M. Zelikowsky, R. Ponnusamy, N. S. Jacobs, H. T. Blair, and M. S. Fanselow (2011)
Science 331, 87-91
   Abstract »    Full Text »    PDF »
Pannexin 1 Constitutes the Large Conductance Cation Channel of Cardiac Myocytes.
M.-C. Kienitz, K. Bender, R. Dermietzel, L. Pott, and G. Zoidl (2011)
J. Biol. Chem. 286, 290-298
   Abstract »    Full Text »    PDF »
Intracellular Cysteine 346 Is Essentially Involved in Regulating Panx1 Channel Activity.
S. Bunse, M. Schmidt, N. Prochnow, G. Zoidl, and R. Dermietzel (2010)
J. Biol. Chem. 285, 38444-38452
   Abstract »    Full Text »    PDF »
The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells.
C. Madry, C. Haglerod, and D. Attwell (2010)
Brain 133, 3755-3763
   Abstract »    Full Text »    PDF »
Recurrent Spontaneous Spreading Depolarizations Facilitate Acute Dendritic Injury in the Ischemic Penumbra.
W. C. Risher, D. Ard, J. Yuan, and S. A. Kirov (2010)
J. Neurosci. 30, 9859-9868
   Abstract »    Full Text »    PDF »
Pannexin-I/P2X 7 Purinergic Receptor Channels Mediate the Release of Cardioprotectants Induced by Ischemic Pre- and Postconditioning.
D. A. Vessey, L. Li, and M. Kelley (2010)
Journal of Cardiovascular Pharmacology and Therapeutics 15, 190-195
   Abstract »    PDF »
Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus.
A. L. Andrade and D. J. Rossi (2010)
J. Physiol. 588, 1499-1514
   Abstract »    Full Text »    PDF »
Role of the gap junction in ischemic preconditioning in the heart.
T. Miura, T. Miki, and T. Yano (2010)
Am J Physiol Heart Circ Physiol 298, H1115-H1125
   Abstract »    Full Text »    PDF »
Pannexin1 and Pannexin3 Delivery, Cell Surface Dynamics, and Cytoskeletal Interactions.
R. Bhalla-Gehi, S. Penuela, J. M. Churko, Q. Shao, and D. W. Laird (2010)
J. Biol. Chem. 285, 9147-9160
   Abstract »    Full Text »    PDF »
Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease.
J. A. Guttman, A. En-Ju Lin, Y. Li, J. Bechberger, C. C. Naus, A. W. Vogl, and B. B. Finlay (2010)
Gut 59, 218-226
   Abstract »    Full Text »    PDF »
Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321N1 astrocytoma cells.
A. E. Blum, B. Corbett Walsh, and G. R. Dubyak (2010)
Am J Physiol Cell Physiol 298, C386-C396
   Abstract »    Full Text »    PDF »
Glycosylation Regulates Pannexin Intermixing and Cellular Localization.
S. Penuela, R. Bhalla, K. Nag, and D. W. Laird (2009)
Mol. Biol. Cell 20, 4313-4323
   Abstract »    Full Text »    PDF »
Metabolic function in Drosophila melanogaster in response to hypoxia and pure oxygen.
W. A. Van Voorhies (2009)
J. Exp. Biol. 212, 3132-3141
   Abstract »    Full Text »    PDF »
Pharmacologic Interventions for Stroke: Looking Beyond the Thrombolysis Time Window Into the Penumbra With Biomarkers, Not a Stopwatch.
J. C. Chavez, O. Hurko, F. C. Barone, and G. Z. Feuerstein (2009)
Stroke 40, e558-e563
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans Innexins Regulate Active Zone Differentiation.
E. Yeh, T. Kawano, S. Ng, R. Fetter, W. Hung, Y. Wang, and M. Zhen (2009)
J. Neurosci. 29, 5207-5217
   Abstract »    Full Text »    PDF »
Loop Gating of Connexin Hemichannels Involves Movement of Pore-lining Residues in the First Extracellular Loop Domain.
V. K. Verselis, M. P. Trelles, C. Rubinos, T. A. Bargiello, and M. Srinivas (2009)
J. Biol. Chem. 284, 4484-4493
   Abstract »    Full Text »    PDF »
Both sides now: multiple interactions of ATP with pannexin-1 hemichannels. Focus on "A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP".
G. R. Dubyak (2009)
Am J Physiol Cell Physiol 296, C235-C241
   Full Text »    PDF »
Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus.
R. J. Thompson, M. F. Jackson, M. E. Olah, R. L. Rungta, D. J. Hines, M. A. Beazely, J. F. MacDonald, and B. A. MacVicar (2008)
Science 322, 1555-1559
   Abstract »    Full Text »    PDF »
Neuroprotection by Cell Permeable TAT-mGluR1 Peptide in Ischemia: Synergy between Carrier and Cargo Sequences.
Wei Xu, Miou Zhou, and M. Baudry (2008)
Neuroscientist 14, 409-414
   Abstract »    PDF »
Divalent Cations Regulate Connexin Hemichannels by Modulating Intrinsic Voltage-dependent Gating.
V. K. Verselis and M. Srinivas (2008)
J. Gen. Physiol. 132, 315-327
   Abstract »    Full Text »    PDF »
Connexin Hemichannel Composition Determines the FGF-1-induced Membrane Permeability and Free [Ca2+]i Responses.
K. A. Schalper, N. Palacios-Prado, M. A. Retamal, K. F. Shoji, A. D. Martinez, and J. C. Saez (2008)
Mol. Biol. Cell 19, 3501-3513
   Abstract »    Full Text »    PDF »
Damage-Induced Activation of ERK1/2 in Cochlear Supporting Cells Is a Hair Cell Death-Promoting Signal That Depends on Extracellular ATP and Calcium.
M. Lahne and J. E. Gale (2008)
J. Neurosci. 28, 4918-4928
   Abstract »    Full Text »    PDF »
Two-Photon Imaging of Stroke Onset In Vivo Reveals That NMDA-Receptor Independent Ischemic Depolarization Is the Major Cause of Rapid Reversible Damage to Dendrites and Spines.
T. H. Murphy, P. Li, K. Betts, and R. Liu (2008)
J. Neurosci. 28, 1756-1772
   Abstract »    Full Text »    PDF »
A Central Role of Connexin 43 in Hypoxic Preconditioning.
J. H.-C. Lin, N. Lou, N. Kang, T. Takano, F. Hu, X. Han, Q. Xu, D. Lovatt, A. Torres, K. Willecke, et al. (2008)
J. Neurosci. 28, 681-695
   Abstract »    Full Text »    PDF »
Inhibition of TRPC5 Channels by Intracellular ATP.
M. Dattilo, N. J. Penington, and K. Williams (2008)
Mol. Pharmacol. 73, 42-49
   Abstract »    Full Text »    PDF »
Gap Junctions Are Required for NMDA Receptor Dependent Cell Death in Developing Neurons.
J. C. de Rivero Vaccari, R. A. Corriveau, and A. B. Belousov (2007)
J Neurophysiol 98, 2878-2886
   Abstract »    Full Text »    PDF »
Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins.
S. Penuela, R. Bhalla, X.-Q. Gong, K. N. Cowan, S. J. Celetti, B. J. Cowan, D. Bai, Q. Shao, and D. W. Laird (2007)
J. Cell Sci. 120, 3772-3783
   Abstract »    Full Text »    PDF »
Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia.
K. Shintani-Ishida, K. Uemura, and K.-i. Yoshida (2007)
Am J Physiol Heart Circ Physiol 293, H1714-H1720
   Abstract »    Full Text »    PDF »
Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling.
F. Hamzei-Sichani, N. Kamasawa, W. G. M. Janssen, T. Yasumura, K. G. V. Davidson, P. R. Hof, S. L. Wearne, M. G. Stewart, S. R. Young, M. A. Whittington, et al. (2007)
PNAS 104, 12548-12553
   Abstract »    Full Text »    PDF »
Potentiation of acid-sensing ion channels by sulfhydryl compounds.
J.-H. Cho and C. C. Askwith (2007)
Am J Physiol Cell Physiol 292, C2161-C2174
   Abstract »    Full Text »    PDF »
H+ Ion Activation and Inactivation of the Ventricular Gap Junction: A Basis for Spatial Regulation of Intracellular pH.
P. Swietach, A. Rossini, K. W. Spitzer, and R. D. Vaughan-Jones (2007)
Circ. Res. 100, 1045-1054
   Abstract »    Full Text »    PDF »
Tumor-Suppressive Effects of Pannexin 1 in C6 Glioma Cells.
C. P.K. Lai, J. F. Bechberger, R. J. Thompson, B. A. MacVicar, R. Bruzzone, and C. C. Naus (2007)
Cancer Res. 67, 1545-1554
   Abstract »    Full Text »    PDF »
Pannexin-1 mediates large pore formation and interleukin-1{beta} release by the ATP-gated P2X7 receptor.
P. Pelegrin and A. Surprenant (2006)
EMBO J. 25, 5071-5082
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
(2006)
Physiology 21, 302-306
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882