Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 312 (5776): 1051-1054

Copyright © 2006 by the American Association for the Advancement of Science

Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release

Robert J. Kittel,1* Carolin Wichmann,1,2* Tobias M. Rasse,1* Wernher Fouquet,1 Manuela Schmidt,1 Andreas Schmid,1 Dhananjay A. Wagh,3 Christian Pawlu,2 Robert R. Kellner,4 Katrin I. Willig,4 Stefan W. Hell,4 Erich Buchner,3 Manfred Heckmann,2{dagger} Stephan J. Sigrist1,5{dagger}

Abstract: The molecular organization of presynaptic active zones during calcium influx–triggered neurotransmitter release is the focus of intense investigation. The Drosophila coiled-coil domain protein Bruchpilot (BRP) was observed in donut-shaped structures centered at active zones of neuromuscular synapses by using subdiffraction resolution STED (stimulated emission depletion) fluorescence microscopy. At brp mutant active zones, electron-dense projections (T-bars) were entirely lost, Ca2+ channels were reduced in density, evoked vesicle release was depressed, and short-term plasticity was altered. BRP-like proteins seem to establish proximity between Ca2+ channels and vesicles to allow efficient transmitter release and patterned synaptic plasticity.

1 European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany.
2 Institut für Klinische Neurobiologie, Josef Schneider Strasse 11, 97080 Würzburg, Germany.
3 Lehrstuhl für Genetik und Neurobiologie, Am Hubland, 97074 Würzburg, Germany.
4 Department of Nano-Biophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
5 Institut für Klinische Neurobiologie, Rudolf Virchow Zentrum, 97080 Würzburg, Germany.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: Heckmann_M{at}klinik.uni-wuerzburg.de (M.H.); ssigris{at}gwdg.de (S.J.S.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synaptic vesicle recycling: steps and principles.
S. O. Rizzoli (2014)
EMBO J. 33, 788-822
   Abstract »    Full Text »    PDF »
Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila.
S. L. Ballard, D. L. Miller, and B. Ganetzky (2014)
J. Cell Biol. 204, 1157-1172
   Abstract »    Full Text »    PDF »
The ALS gene FUS regulates synaptic transmission at the Drosophila neuromuscular junction.
J. B. Machamer, S. E. Collins, and T. E. Lloyd (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Synaptic abnormalities in a Drosophila model of Alzheimer's disease.
S. D. Mhatre, V. Satyasi, M. Killen, B. E. Paddock, R. D. Moir, A. J. Saunders, and D. R. Marenda (2014)
Dis. Model. Mech. 7, 373-385
   Abstract »    Full Text »    PDF »
N-glycosylation requirements in neuromuscular synaptogenesis.
W. Parkinson, M. L. Dear, E. Rushton, and K. Broadie (2013)
Development 140, 4970-4981
   Abstract »    Full Text »    PDF »
Defects in Synapse Structure and Function Precede Motor Neuron Degeneration in Drosophila Models of FUS-Related ALS.
M. Shahidullah, S. J. Le Marchand, H. Fei, J. Zhang, U. B. Pandey, M. B. Dalva, P. Pasinelli, and I. B. Levitan (2013)
J. Neurosci. 33, 19590-19598
   Abstract »    Full Text »    PDF »
Liprin-{alpha}/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans.
M. Kittelmann, J. Hegermann, A. Goncharov, H. Taru, M. H. Ellisman, J. E. Richmond, Y. Jin, and S. Eimer (2013)
J. Cell Biol. 203, 849-863
   Abstract »    Full Text »    PDF »
The Kinesin-3, Unc-104 Regulates Dendrite Morphogenesis and Synaptic Development in Drosophila.
J. V. Kern, Y. V. Zhang, S. Kramer, J. E. Brenman, and T. M. Rasse (2013)
Genetics 195, 59-72
   Abstract »    Full Text »    PDF »
The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles.
T. Matkovic, M. Siebert, E. Knoche, H. Depner, S. Mertel, D. Owald, M. Schmidt, U. Thomas, A. Sickmann, D. Kamin, et al. (2013)
J. Cell Biol. 202, 667-683
   Abstract »    Full Text »    PDF »
Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction.
G. Kauwe and E. Y. Isacoff (2013)
PNAS 110, 9142-9147
   Abstract »    Full Text »    PDF »
Tuberous sclerosis complex regulates Drosophila neuromuscular junction growth via the TORC2/Akt pathway.
R. Natarajan, D. Trivedi-Vyas, and Y. P. Wairkar (2013)
Hum. Mol. Genet. 22, 2010-2023
   Abstract »    Full Text »    PDF »
Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis.
P. S. Estes, S. G. Daniel, A. P. Mccallum, A. V. Boehringer, A. S. Sukhina, R. A. Zwick, and D. C. Zarnescu (2013)
Dis. Model. Mech. 6, 721-733
   Abstract »    Full Text »    PDF »
The cell polarity scaffold Lethal Giant Larvae regulates synapse morphology and function.
J. Staples and K. Broadie (2013)
J. Cell Sci. 126, 1992-2003
   Abstract »    Full Text »    PDF »
Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot.
S. Zang, Y. O. Ali, K. Ruan, and R. G. Zhai (2013)
EMBO Rep. 14, 87-94
   Abstract »    Full Text »    PDF »
Complexin Controls Spontaneous and Evoked Neurotransmitter Release by Regulating the Timing and Properties of Synaptotagmin Activity.
R. A. Jorquera, S. Huntwork-Rodriguez, Y. Akbergenova, R. W. Cho, and J. T. Littleton (2012)
J. Neurosci. 32, 18234-18245
   Abstract »    Full Text »    PDF »
RIM Controls Homeostatic Plasticity through Modulation of the Readily-Releasable Vesicle Pool.
M. Muller, K. S. Y. Liu, S. J. Sigrist, and G. W. Davis (2012)
J. Neurosci. 32, 16574-16585
   Abstract »    Full Text »    PDF »
RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction.
E. R. Graf, V. Valakh, C. M. Wright, C. Wu, Z. Liu, Y. Q. Zhang, and A. DiAntonio (2012)
J. Neurosci. 32, 16586-16596
   Abstract »    Full Text »    PDF »
Deletion of the Presynaptic Scaffold CAST Reduces Active Zone Size in Rod Photoreceptors and Impairs Visual Processing.
S. tom Dieck, D. Specht, N. Strenzke, Y. Hida, V. Krishnamoorthy, K.-F. Schmidt, E. Inoue, H. Ishizaki, M. Tanaka-Okamoto, J. Miyoshi, et al. (2012)
J. Neurosci. 32, 12192-12203
   Abstract »    Full Text »    PDF »
Physical and functional interaction of the active zone protein CAST/ERC2 and the {beta}-subunit of the voltage-dependent Ca2+ channel.
S. Kiyonaka, H. Nakajima, Y. Takada, Y. Hida, T. Yoshioka, A. Hagiwara, I. Kitajima, Y. Mori, and T. Ohtsuka (2012)
J. Biochem. 152, 149-159
   Abstract »    Full Text »    PDF »
Snapin is Critical for Presynaptic Homeostatic Plasticity.
D. K. Dickman, A. Tong, and G. W. Davis (2012)
J. Neurosci. 32, 8716-8724
   Abstract »    Full Text »    PDF »
Regulation of Fasciclin II and Synaptic Terminal Development by the Splicing Factor Beag.
E. S. Beck, G. Gasque, W. L. Imlach, W. Jiao, B. Jiwon Choi, P.-S. Wu, M. L. Kraushar, and B. D. McCabe (2012)
J. Neurosci. 32, 7058-7073
   Abstract »    Full Text »    PDF »
Sub-diffraction imaging on standard microscopes through photobleaching microscopy with non-linear processing.
S. Munck, K. Miskiewicz, R. Sannerud, S. A. Menchon, L. Jose, R. Heintzmann, P. Verstreken, and W. Annaert (2012)
J. Cell Sci. 125, 2257-2266
   Abstract »    Full Text »    PDF »
Stimulated Emission Depletion (STED) Imaging of Dendritic Spines in Living Hippocampal Slices.
K. I. Willig and U. V. Nagerl (2012)
Cold Spring Harb Protoc 2012, pdb.prot069260
   Abstract »    Full Text »    PDF »
In Vivo Imaging of Drosophila Larval Neuromuscular Junctions to Study Synapse Assembly.
T. F. M. Andlauer and S. J. Sigrist (2012)
Cold Spring Harb Protoc 2012, pdb.top068577
   Abstract »    Full Text »    PDF »
In Vivo Imaging of the Drosophila Larval Neuromuscular Junction.
T. F. M. Andlauer and S. J. Sigrist (2012)
Cold Spring Harb Protoc 2012, pdb.prot068593
   Abstract »    Full Text »    PDF »
FoxO limits microtubule stability and is itself negatively regulated by microtubule disruption.
I. V. Nechipurenko and H. T. Broihier (2012)
J. Cell Biol. 196, 345-362
   Abstract »    Full Text »    PDF »
RIM-Binding Protein, a Central Part of the Active Zone, Is Essential for Neurotransmitter Release.
K. S. Y. Liu, M. Siebert, S. Mertel, E. Knoche, S. Wegener, C. Wichmann, T. Matkovic, K. Muhammad, H. Depner, C. Mettke, et al. (2011)
Science 334, 1565-1569
   Abstract »    Full Text »    PDF »
S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development.
L. Cheng, C. Locke, and G. W. Davis (2011)
J. Cell Biol. 194, 921-935
   Abstract »    Full Text »    PDF »
Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila.
F. Christiansen, C. Zube, T. F. M. Andlauer, C. Wichmann, W. Fouquet, D. Owald, S. Mertel, F. Leiss, G. Tavosanis, A. J. Farca Luna, et al. (2011)
J. Neurosci. 31, 9696-9707
   Abstract »    Full Text »    PDF »
Differential Control of Presynaptic CaMKII Activation and Translocation to Active Zones.
D. Shakiryanova, T. Morimoto, C. Zhou, A. K. Chouhan, S. J. Sigrist, A. Nose, G. T. Macleod, D. L. Deitcher, and E. S. Levitan (2011)
J. Neurosci. 31, 9093-9100
   Abstract »    Full Text »    PDF »
Rapid Active Zone Remodeling during Synaptic Plasticity.
A. Weyhersmuller, S. Hallermann, N. Wagner, and J. Eilers (2011)
J. Neurosci. 31, 6041-6052
   Abstract »    Full Text »    PDF »
Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells.
L. Sheets, J. G. Trapani, W. Mo, N. Obholzer, and T. Nicolson (2011)
Development 138, 1309-1319
   Abstract »    Full Text »    PDF »
Bruchpilot, A Synaptic Active Zone Protein for Anesthesia-Resistant Memory.
S. Knapek, S. Sigrist, and H. Tanimoto (2011)
J. Neurosci. 31, 3453-3458
   Abstract »    Full Text »    PDF »
Calcium Channels Link the Muscle-Derived Synapse Organizer Laminin {beta}2 to Bassoon and CAST/Erc2 to Organize Presynaptic Active Zones.
J. Chen, S. E. Billings, and H. Nishimune (2011)
J. Neurosci. 31, 512-525
   Abstract »    Full Text »    PDF »
A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome.
J.-K. Choi, Y.-C. Jeon, D.-W. Lee, J.-M. Oh, H.-P. Lee, B.-H. Jeong, R. I. Carp, Y. H. Koh, and Y.-S. Kim (2010)
Hum. Mol. Genet. 19, 4474-4489
   Abstract »    Full Text »    PDF »
Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition.
C. Geis, A. Weishaupt, S. Hallermann, B. Grunewald, C. Wessig, T. Wultsch, A. Reif, N. Byts, M. Beck, S. Jablonka, et al. (2010)
Brain 133, 3166-3180
   Abstract »    Full Text »    PDF »
Naked Dense Bodies Provoke Depression.
S. Hallermann, R. J. Kittel, C. Wichmann, A. Weyhersmuller, W. Fouquet, S. Mertel, D. Owald, S. Eimer, H. Depner, M. Schwarzel, et al. (2010)
J. Neurosci. 30, 14340-14345
   Abstract »    Full Text »    PDF »
CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone.
Y. Hida and T. Ohtsuka (2010)
J. Biochem. 148, 131-137
   Abstract »    Full Text »    PDF »
A guide to super-resolution fluorescence microscopy.
L. Schermelleh, R. Heintzmann, and H. Leonhardt (2010)
J. Cell Biol. 190, 165-175
   Abstract »    Full Text »    PDF »
Imaging Living Synapses at the Nanoscale by STED Microscopy.
U. V. Nagerl and T. Bonhoeffer (2010)
J. Neurosci. 30, 9341-9346
   Full Text »    PDF »
Synaptic Homeostasis Is Consolidated by the Cell Fate Gene gooseberry, a Drosophila pax3/7 Homolog.
B. Marie, E. Pym, S. Bergquist, and G. W. Davis (2010)
J. Neurosci. 30, 8071-8082
   Abstract »    Full Text »    PDF »
TRPV1 acts as a synaptic protein and regulates vesicle recycling.
C. Goswami, N. Rademacher, K.-H. Smalla, V. Kalscheuer, H.-H. Ropers, E. D. Gundelfinger, and T. Hucho (2010)
J. Cell Sci. 123, 2045-2057
   Abstract »    Full Text »    PDF »
Sialyltransferase Regulates Nervous System Function in Drosophila.
E. Repnikova, K. Koles, M. Nakamura, J. Pitts, H. Li, A. Ambavane, M. J. Zoran, and V. M. Panin (2010)
J. Neurosci. 30, 6466-6476
   Abstract »    Full Text »    PDF »
A Perisynaptic Menage a Trois between Dlg, DLin-7, and Metro Controls Proper Organization of Drosophila Synaptic Junctions.
A. Bachmann, O. Kobler, R. J. Kittel, C. Wichmann, J. Sierralta, S. J. Sigrist, E. D. Gundelfinger, E. Knust, and U. Thomas (2010)
J. Neurosci. 30, 5811-5824
   Abstract »    Full Text »    PDF »
Importin-{beta}11 Regulates Synaptic Phosphorylated Mothers Against Decapentaplegic, and Thereby Influences Synaptic Development and Function at the Drosophila Neuromuscular Junction.
M. E. Higashi-Kovtun, T. J. Mosca, D. K. Dickman, I. A. Meinertzhagen, and T. L. Schwarz (2010)
J. Neurosci. 30, 5253-5268
   Abstract »    Full Text »    PDF »
Membrane Protein Clusters at Nanoscale Resolution: More Than Pretty Pictures.
T. Lang and S. O. Rizzoli (2010)
Physiology 25, 116-124
   Abstract »    Full Text »    PDF »
A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila.
D. Owald, W. Fouquet, M. Schmidt, C. Wichmann, S. Mertel, H. Depner, F. Christiansen, C. Zube, C. Quentin, J. Korner, et al. (2010)
J. Cell Biol. 188, 565-579
   Abstract »    Full Text »    PDF »
Aminopyridines Potentiate Synaptic and Neuromuscular Transmission by Targeting the Voltage-activated Calcium Channel {beta} Subunit.
Z.-Z. Wu, D.-P. Li, S.-R. Chen, and H.-L. Pan (2009)
J. Biol. Chem. 284, 36453-36461
   Abstract »    Full Text »    PDF »
Drosophila Brain Development: Closing the Gap between a Macroarchitectural and Microarchitectural Approach.
A. Cardona, S. Saalfeld, P. Tomancak, and V. Hartenstein (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Frequenin/NCS-1 and the Ca2+-channel {alpha}1-subunit co-regulate synaptic transmission and nerve-terminal growth.
J. S. Dason, J. Romero-Pozuelo, L. Marin, B. G. Iyengar, M. K. Klose, A. Ferrus, and H. L. Atwood (2009)
J. Cell Sci. 122, 4109-4121
   Abstract »    Full Text »    PDF »
PP2A and GSK-3{beta} Act Antagonistically to Regulate Active Zone Development.
N. M. Viquez, P. Fuger, V. Valakh, R. W. Daniels, T. M. Rasse, and A. DiAntonio (2009)
J. Neurosci. 29, 11484-11494
   Abstract »    Full Text »    PDF »
Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell.
P. Heidrych, U. Zimmermann, S. Kuhn, C. Franz, J. Engel, S. V. Duncker, B. Hirt, C. M. Pusch, P. Ruth, M. Pfister, et al. (2009)
Hum. Mol. Genet. 18, 2779-2790
   Abstract »    Full Text »    PDF »
Maturation of active zone assembly by Drosophila Bruchpilot.
W. Fouquet, D. Owald, C. Wichmann, S. Mertel, H. Depner, M. Dyba, S. Hallermann, R. J. Kittel, S. Eimer, and S. J. Sigrist (2009)
J. Cell Biol. 186, 129-145
   Abstract »    Full Text »    PDF »
The Yin and Yang of Synaptic Active Zone Assembly.
S. J. Sigrist (2009)
Science Signaling 2, pe32
   Abstract »    Full Text »    PDF »
Stimulation-Induced Formation of the Reserve Pool of Vesicles in Drosophila Motor Boutons.
Y. Akbergenova and M. Bykhovskaia (2009)
J Neurophysiol 101, 2423-2433
   Abstract »    Full Text »    PDF »
The Translational Repressors Nanos and Pumilio Have Divergent Effects on Presynaptic Terminal Growth and Postsynaptic Glutamate Receptor Subunit Composition.
K. P. Menon, S. Andrews, M. Murthy, E. R. Gavis, and K. Zinn (2009)
J. Neurosci. 29, 5558-5572
   Abstract »    Full Text »    PDF »
Importin 13 Regulates Neurotransmitter Release at the Drosophila Neuromuscular Junction.
N. Giagtzoglou, Y. Q. Lin, C. Haueter, and H. J. Bellen (2009)
J. Neurosci. 29, 5628-5639
   Abstract »    Full Text »    PDF »
RSY-1 Is a Local Inhibitor of Presynaptic Assembly in C. elegans.
M. R. Patel and K. Shen (2009)
Science 323, 1500-1503
   Abstract »    Full Text »    PDF »
Fos and Jun potentiate individual release sites and mobilize the reserve synaptic-vesicle pool at the Drosophila larval motor synapse.
S. M. Kim, V. Kumar, Y.-Q. Lin, S. Karunanithi, and M. Ramaswami (2009)
PNAS 106, 4000-4005
   Abstract »    Full Text »    PDF »
Photoreceptor Neurons Find New Synaptic Targets When Misdirected by Overexpressing runt in Drosophila.
T. N. Edwards and I. A. Meinertzhagen (2009)
J. Neurosci. 29, 828-841
   Abstract »    Full Text »    PDF »
Unc-51 Controls Active Zone Density and Protein Composition by Downregulating ERK Signaling.
Y. P. Wairkar, H. Toda, H. Mochizuki, K. Furukubo-Tokunaga, T. Tomoda, and A. DiAntonio (2009)
J. Neurosci. 29, 517-528
   Abstract »    Full Text »    PDF »
Live-cell imaging of dendritic spines by STED microscopy.
U. V. Nagerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer (2008)
PNAS 105, 18982-18987
   Abstract »    Full Text »    PDF »
Delayed Synaptic Transmission in Drosophila cacophonynull Embryos.
J. Hou, T. Tamura, and Y. Kidokoro (2008)
J Neurophysiol 100, 2833-2842
   Abstract »    Full Text »    PDF »
GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells.
C. J. Price, R. Scott, D. A. Rusakov, and M. Capogna (2008)
J. Neurosci. 28, 6974-6982
   Abstract »    Full Text »    PDF »
Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy.
L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, et al. (2008)
Science 320, 1332-1336
   Abstract »    Full Text »    PDF »
The Dystrophin Dp186 Isoform Regulates Neurotransmitter Release at a Central Synapse in Drosophila.
L. G. Fradkin, R. A. Baines, M. C. van der Plas, and J. N. Noordermeer (2008)
J. Neurosci. 28, 5105-5114
   Abstract »    Full Text »    PDF »
Presynaptic Calcium Channel Localization and Calcium-Dependent Synaptic Vesicle Exocytosis Regulated by the Fuseless Protein.
A. A. Long, E. Kim, H.-T. Leung, E. Woodruff III, L. An, R. W. Doerge, W. L. Pak, and K. Broadie (2008)
J. Neurosci. 28, 3668-3682
   Abstract »    Full Text »    PDF »
Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes.
A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie (2008)
PNAS 105, 3298-3303
   Abstract »    Full Text »    PDF »
Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles.
T. Ohyama, P. Verstreken, C. V. Ly, T. Rosenmund, A. Rajan, A.-C. Tien, C. Haueter, K. L. Schulze, and H. J. Bellen (2007)
J. Cell Biol. 179, 1481-1496
   Abstract »    Full Text »    PDF »
Drosophila Fragile X Mental Retardation Protein and Metabotropic Glutamate Receptor A Convergently Regulate the Synaptic Ratio of Ionotropic Glutamate Receptor Subclasses.
L. Pan and K. S. Broadie (2007)
J. Neurosci. 27, 12378-12389
   Abstract »    Full Text »    PDF »
LAR, liprin {alpha} and the regulation of active zone morphogenesis.
E. Stryker and K. G. Johnson (2007)
J. Cell Sci. 120, 3723-3728
   Abstract »    Full Text »    PDF »
Flight Initiation and Maintenance Deficits in Flies with Genetically Altered Biogenic Amine Levels.
B. Brembs, F. Christiansen, H. J. Pfluger, and C. Duch (2007)
J. Neurosci. 27, 11122-11131
   Abstract »    Full Text »    PDF »
Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy.
S. Jablonka, M. Beck, B. D. Lechner, C. Mayer, and M. Sendtner (2007)
J. Cell Biol. 179, 139-149
   Abstract »    Full Text »    PDF »
Syntabulin-Kinesin-1 Family Member 5B-Mediated Axonal Transport Contributes to Activity-Dependent Presynaptic Assembly.
Q. Cai, P.-Y. Pan, and Z.-H. Sheng (2007)
J. Neurosci. 27, 7284-7296
   Abstract »    Full Text »    PDF »
Three-Dimensional Architecture of Presynaptic Terminal Cytomatrix.
L. Siksou, P. Rostaing, J.-P. Lechaire, T. Boudier, T. Ohtsuka, A. Fejtova, H.-T. Kao, P. Greengard, E. D. Gundelfinger, A. Triller, et al. (2007)
J. Neurosci. 27, 6868-6877
   Abstract »    Full Text »    PDF »
The Ig cell adhesion molecule Basigin controls compartmentalization and vesicle release at Drosophila melanogaster synapses.
F. Besse, S. Mertel, R. J. Kittel, C. Wichmann, T. M. Rasse, S. J. Sigrist, and A. Ephrussi (2007)
J. Cell Biol. 177, 843-855
   Abstract »    Full Text »    PDF »
Far-Field Optical Nanoscopy.
S. W. Hell (2007)
Science 316, 1153-1158
   Abstract »    Full Text »    PDF »
Breaking the resolution limit in light microscopy.
R. Heintzmann and G. Ficz (2006)
Briefings in Functional Genomics 5, 289-301
   Abstract »    Full Text »    PDF »
A postsynaptic Spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction.
J. Pielage, R. D. Fetter, and G. W. Davis (2006)
J. Cell Biol. 175, 491-503
   Abstract »    Full Text »    PDF »
Non-NMDA-Type Glutamate Receptors Are Essential for Maturation But Not for Initial Assembly of Synapses at Drosophila Neuromuscular Junctions..
A. Schmid, G. Qin, C. Wichmann, R. J. Kittel, S. Mertel, W. Fouquet, M. Schmidt, M. Heckmann, and S. J. Sigrist (2006)
J. Neurosci. 26, 11267-11277
   Abstract »    Full Text »    PDF »
Macromolecular-scale resolution in biological fluorescence microscopy.
G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell (2006)
PNAS 103, 11440-11445
   Abstract »    Full Text »    PDF »
Neuroscience. Gatekeeper at the synapse..
H. L. Atwood (2006)
Science 312, 1008-1009
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882