Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 312 (5779): 1520-1523

Copyright © 2006 by the American Association for the Advancement of Science

TOPLESS Regulates Apical Embryonic Fate in Arabidopsis

Jeff A. Long,1* Carolyn Ohno,2 Zachery R. Smith,1 Elliot M. Meyerowitz2

Abstract: The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFERASE GNAT SUPERFAMILY1 suppress the tpl-1 phenotype. Mutations in HISTONE DEACETYLASE19, a putative corepressor, increase the penetrance of tpl-1 and display similar apical defects. These data point to a transcriptional repression mechanism that prevents root formation in the shoot pole during Arabidopsis embryogenesis.

1 Plant Biology Laboratory, The Salk Institute for Biological Sciences, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
2 Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

* To whom correspondence should be addressed. E-mail: long{at}

Genome-wide identification, phylogenetic analysis, expression profiling, and protein-protein interaction properties of TOPLESS gene family members in tomato.
Y. Hao, X. Wang, X. Li, C. Bassa, I. Mila, C. Audran, E. Maza, Z. Li, M. Bouzayen, B. van der Rest, et al. (2014)
J. Exp. Bot. 65, 1013-1023
   Abstract »    Full Text »    PDF »
STENOFOLIA Recruits TOPLESS to Repress ASYMMETRIC LEAVES2 at the Leaf Margin and Promote Leaf Blade Outgrowth in Medicago truncatula.
F. Zhang, Y. Wang, G. Li, Y. Tang, E. M. Kramer, and M. Tadege (2014)
PLANT CELL 26, 650-664
   Abstract »    Full Text »    PDF »
Histone Deacetylase AtHDA7 Is Required for Female Gametophyte and Embryo Development in Arabidopsis.
R. A. Cigliano, G. Cremona, R. Paparo, P. Termolino, G. Perrella, R. Gutzat, M. F. Consiglio, and C. Conicella (2013)
Plant Physiology 163, 431-440
   Abstract »    Full Text »    PDF »
The role of auxin in shaping shoot architecture.
A. Gallavotti (2013)
J. Exp. Bot. 64, 2593-2608
   Abstract »    Full Text »    PDF »
Tuning the auxin transcriptional response.
E. Pierre-Jerome, B. L. Moss, and J. L. Nemhauser (2013)
J. Exp. Bot. 64, 2557-2563
   Abstract »    Full Text »    PDF »
Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function.
L. Turchi, M. Carabelli, V. Ruzza, M. Possenti, M. Sassi, A. Penalosa, G. Sessa, S. Salvi, V. Forte, G. Morelli, et al. (2013)
Development 140, 2118-2129
   Abstract »    Full Text »    PDF »
MYC2: The Master in Action.
K. Kazan and J. M. Manners (2013)
Mol Plant 6, 686-703
   Abstract »    Full Text »    PDF »
The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis.
Q. Tao, D. Guo, B. Wei, F. Zhang, C. Pang, H. Jiang, J. Zhang, T. Wei, H. Gu, L.-J. Qu, et al. (2013)
PLANT CELL 25, 421-437
   Abstract »    Full Text »    PDF »
Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription.
L. Wang, J. Kim, and D. E. Somers (2013)
PNAS 110, 761-766
   Abstract »    Full Text »    PDF »
Arabidopsis Paired Amphipathic Helix Proteins SNL1 and SNL2 Redundantly Regulate Primary Seed Dormancy via Abscisic Acid-Ethylene Antagonism Mediated by Histone Deacetylation.
Z. Wang, H. Cao, Y. Sun, X. Li, F. Chen, A. Carles, Y. Li, M. Ding, C. Zhang, X. Deng, et al. (2013)
PLANT CELL 25, 149-166
   Abstract »    Full Text »    PDF »
Defence on demand: mechanisms behind optimal defence patterns.
S. Meldau, M. Erb, and I. T. Baldwin (2012)
Ann. Bot. 110, 1503-1514
   Abstract »    Full Text »    PDF »
APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
N. T. Krogan, K. Hogan, and J. A. Long (2012)
Development 139, 4180-4190
   Abstract »    Full Text »    PDF »
TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize.
F. Bai, R. Reinheimer, D. Durantini, E. A. Kellogg, and R. J. Schmidt (2012)
PNAS 109, 12225-12230
   Abstract »    Full Text »    PDF »
Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU.
M. Kanei, G. Horiguchi, and H. Tsukaya (2012)
Development 139, 2436-2446
   Abstract »    Full Text »    PDF »
An Epigenetic Integrator: New Insights into Genome Regulation, Environmental Stress Responses and Developmental Controls by HISTONE DEACETYLASE 6.
J.-M. Kim, T. K. To, and M. Seki (2012)
Plant Cell Physiol. 53, 794-800
   Abstract »    Full Text »    PDF »
In the absence of BYPASS1-related gene function, the bps signal disrupts embryogenesis by an auxin-independent mechanism.
D.-K. Lee, J. M. Van Norman, C. Murphy, E. Adhikari, J. W. Reed, and L. E. Sieburth (2012)
Development 139, 805-815
   Abstract »    Full Text »    PDF »
Participation of Chromatin-Remodeling Proteins in the Repair of Ultraviolet-B-Damaged DNA.
M. Campi, L. D'Andrea, J. Emiliani, and P. Casati (2012)
Plant Physiology 158, 981-995
   Abstract »    Full Text »    PDF »
A Rolling Stone Gathers No Moss, but Resistant Plants Must Gather Their MOSes.
K. C. M. Johnson, O. X. Dong, Y. Huang, and X. Li (2012)
Cold Spring Harb Symp Quant Biol 77, 259-268
   Abstract »    Full Text »    PDF »
The TOPLESS Interactome: A Framework for Gene Repression in Arabidopsis.
B. Causier, M. Ashworth, W. Guo, and B. Davies (2012)
Plant Physiology 158, 423-438
   Abstract »    Full Text »    PDF »
POPCORN Functions in the Auxin Pathway to Regulate Embryonic Body Plan and Meristem Organization in Arabidopsis.
D. Xiang, H. Yang, P. Venglat, Y. Cao, R. Wen, M. Ren, S. Stone, E. Wang, H. Wang, W. Xiao, et al. (2011)
PLANT CELL 23, 4348-4367
   Abstract »    Full Text »    PDF »
Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome.
L.-P. Hamel, M. Benchabane, M.-C. Nicole, I. T. Major, M.-J. Morency, G. Pelletier, N. Beaudoin, J. Sheen, and A. Seguin (2011)
Plant Physiology 157, 1379-1393
   Abstract »    Full Text »    PDF »
The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade.
L. Pauwels and A. Goossens (2011)
PLANT CELL 23, 3089-3100
   Abstract »    Full Text »    PDF »
RopGEF7 Regulates PLETHORA-Dependent Maintenance of the Root Stem Cell Niche in Arabidopsis.
M. Chen, H. Liu, J. Kong, Y. Yang, N. Zhang, R. Li, J. Yue, J. Huang, C. Li, A. Y. Cheung, et al. (2011)
PLANT CELL 23, 2880-2894
   Abstract »    Full Text »    PDF »
Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo.
S. Jeong, M. Bayer, and W. Lukowitz (2011)
J. Exp. Bot. 62, 1687-1697
   Abstract »    Full Text »    PDF »
Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.
M. J. Miller, G. A. Barrett-Wilt, Z. Hua, and R. D. Vierstra (2010)
PNAS 107, 16512-16517
   Abstract »    Full Text »    PDF »
The control of axillary meristem fate in the maize ramosa pathway.
A. Gallavotti, J. A. Long, S. Stanfield, X. Yang, D. Jackson, E. Vollbrecht, and R. J. Schmidt (2010)
Development 137, 2849-2856
   Abstract »    Full Text »    PDF »
Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor.
Z. Zhu, F. Xu, Y. Zhang, Y. T. Cheng, M. Wiermer, X. Li, and Y. Zhang (2010)
PNAS 107, 13960-13965
   Abstract »    Full Text »    PDF »
Histone Acetyltransferase AtGCN5/HAG1 Is a Versatile Regulator of Developmental and Inducible Gene Expression in Arabidopsis.
C. Servet, N. Conde e Silva, and D.-X. Zhou (2010)
Mol Plant 3, 670-677
   Abstract »    Full Text »    PDF »
Auxin Perception--Structural Insights.
L. I. Calderon-Villalobos, X. Tan, N. Zheng, and M. Estelle (2010)
Cold Spring Harb Perspect Biol 2, a005546
   Abstract »    Full Text »    PDF »
Putative Arabidopsis Transcriptional Adaptor Protein (PROPORZ1) is required to modulate histone acetylation in response to auxin.
J. M. Anzola, T. Sieberer, M. Ortbauer, H. Butt, B. Korbei, I. Weinhofer, A. E. Mullner, and C. Luschnig (2010)
PNAS 107, 10308-10313
   Abstract »    Full Text »    PDF »
MGOUN1 Encodes an Arabidopsis Type IB DNA Topoisomerase Required in Stem Cell Regulation and to Maintain Developmentally Regulated Gene Silencing.
P. Graf, A. Dolzblasz, T. Wurschum, M. Lenhard, U. Pfreundt, and T. Laux (2010)
PLANT CELL 22, 716-728
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of Ethylene-Responsive Element Binding Factor-Associated Amphiphilic Repression Motif-Containing Transcriptional Regulators in Arabidopsis.
S. Kagale, M. G. Links, and K. Rozwadowski (2010)
Plant Physiology 152, 1109-1134
   Abstract »    Full Text »    PDF »
Auxin Control of Embryo Patterning.
B. Moller and D. Weijers (2009)
Cold Spring Harb Perspect Biol 1, a001545
   Abstract »    Full Text »    PDF »
Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana.
W.-H. Shen and L. Xu (2009)
Mol Plant 2, 600-609
   Abstract »    Full Text »    PDF »
Histone Acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the Vernalization Response.
D. M. Bond, E. S. Dennis, B. J. Pogson, and E. J. Finnegan (2009)
Mol Plant 2, 724-737
   Abstract »    Full Text »    PDF »
Functional Analysis of Transcription Factors in Arabidopsis.
N. Mitsuda and M. Ohme-Takagi (2009)
Plant Cell Physiol. 50, 1232-1248
   Abstract »    Full Text »    PDF »
Members of the GCN5 Histone Acetyltransferase Complex Regulate PLETHORA-Mediated Root Stem Cell Niche Maintenance and Transit Amplifying Cell Proliferation in Arabidopsis.
N. Kornet and B. Scheres (2009)
PLANT CELL 21, 1070-1079
   Abstract »    Full Text »    PDF »
Analysis of the Pumpkin Phloem Proteome Provides Insights into Angiosperm Sieve Tube Function.
M.-K. Lin, Y.-J. Lee, T. J. Lough, B. S. Phinney, and W. J. Lucas (2009)
Mol. Cell. Proteomics 8, 343-356
   Abstract »    Full Text »    PDF »
Stem Cell Factors in Plants: Chromatin Connections.
N. Kornet and B. Scheres (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Variation of metabolic profiles in developing maize kernels up- and down-regulated for the hda101 gene.
C. Castro, M. Motto, V. Rossi, and C. Manetti (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense.
K.-C. Kim, Z. Lai, B. Fan, and Z. Chen (2008)
PLANT CELL 20, 2357-2371
   Abstract »    Full Text »    PDF »
Cotyledon organogenesis.
J. W. Chandler (2008)
J. Exp. Bot. 59, 2917-2931
   Abstract »    Full Text »    PDF »
The Evolving Complexity of the Auxin Pathway.
S. Lau, G. Jurgens, and I. De Smet (2008)
PLANT CELL 20, 1738-1746
   Full Text »    PDF »
Mutation of Arabidopsis BARD1 Causes Meristem Defects by Failing to Confine WUSCHEL Expression to the Organizing Center.
P. Han, Q. Li, and Y.-X. Zhu (2008)
PLANT CELL 20, 1482-1493
   Abstract »    Full Text »    PDF »
LEUNIG_HOMOLOG and LEUNIG Perform Partially Redundant Functions during Arabidopsis Embryo and Floral Development.
J. Sitaraman, M. Bui, and Z. Liu (2008)
Plant Physiology 147, 672-681
   Abstract »    Full Text »    PDF »
TOPLESS Mediates Auxin-Dependent Transcriptional Repression During Arabidopsis Embryogenesis.
H. Szemenyei, M. Hannon, and J. A. Long (2008)
Science 319, 1384-1386
   Abstract »    Full Text »    PDF »
HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis.
K. Wu, L. Zhang, C. Zhou, C.-W. Yu, and V. Chaikam (2008)
J. Exp. Bot. 59, 225-234
   Abstract »    Full Text »    PDF »
The Transcription Corepressor LEUNIG Interacts with the Histone Deacetylase HDA19 and Mediator Components MED14 (SWP) and CDK8 (HEN3) To Repress Transcription.
D. Gonzalez, A. J. Bowen, T. S. Carroll, and R. S. Conlan (2007)
Mol. Cell. Biol. 27, 5306-5315
   Abstract »    Full Text »    PDF »
Maize Histone Deacetylase hda101 Is Involved in Plant Development, Gene Transcription, and Sequence-Specific Modulation of Histone Modification of Genes and Repeats.
V. Rossi, S. Locatelli, S. Varotto, G. Donn, R. Pirona, D. A. Henderson, H. Hartings, and M. Motto (2007)
PLANT CELL 19, 1145-1162
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882