Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 313 (5785): 320-324

Copyright © 2006 by the American Association for the Advancement of Science

A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline

Vasily V. Vagin,1,2* Alla Sigova,1* Chengjian Li,1 Hervé Seitz,1 Vladimir Gvozdev,2 Phillip D. Zamore1{dagger}

Abstract: In the Drosophila germline, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous selfish genetic elements such as retrotransposons and repetitive sequences. Whereas small interfering RNAs (siRNAs) derive from both the sense and antisense strands of their double-stranded RNA precursors, rasiRNAs arise mainly from the antisense strand. rasiRNA production appears not to require Dicer-1, which makes microRNAs (miRNAs), or Dicer-2, which makes siRNAs, and rasiRNAs lack the 2',3' hydroxy termini characteristic of animal siRNA and miRNA. Unlike siRNAs and miRNAs, rasiRNAs function through the Piwi, rather than the Ago, Argonaute protein subfamily. Our data suggest that rasiRNAs protect the fly germline through a silencing mechanism distinct from both the miRNA and RNA interference pathways.

1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
2 Department of Animal Molecular Genetics, Institute of Molecular Genetics, Moscow 123182, Russia.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: phillip.zamore{at}umassmed.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Elements and machinery of non-coding RNAs: toward their taxonomy.
T. Hirose, Y. Mishima, and Y. Tomari (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
Diversity of the piRNA pathway for nonself silencing: worm-specific piRNA biogenesis factors.
N. Izumi and Y. Tomari (2014)
Genes & Dev. 28, 665-671
   Abstract »    Full Text »    PDF »
Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery.
S. Minakhina, N. Changela, and R. Steward (2014)
Development 141, 259-268
   Abstract »    Full Text »    PDF »
Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila.
M. Abe, A. Naqvi, G.-J. Hendriks, V. Feltzin, Y. Zhu, A. Grigoriev, and N. M. Bonini (2014)
Genes & Dev. 28, 44-57
   Abstract »    Full Text »    PDF »
Role of the Trypanosoma brucei HEN1 Family Methyltransferase in Small Interfering RNA Modification.
H. Shi, R. L. Barnes, N. Carriero, V. D. Atayde, C. Tschudi, and E. Ullu (2014)
Eukaryot. Cell 13, 77-86
   Abstract »    Full Text »    PDF »
Minotaur is critical for primary piRNA biogenesis.
V. V. Vagin, Y. Yu, A. Jankowska, Y. Luo, K. A. Wasik, C. D. Malone, E. Harrison, A. Rosebrock, B. T. Wakimoto, D. Fagegaltier, et al. (2013)
RNA 19, 1064-1077
   Abstract »    Full Text »    PDF »
Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins.
N. Izumi, S. Kawaoka, S. Yasuhara, Y. Suzuki, S. Sugano, S. Katsuma, and Y. Tomari (2013)
RNA 19, 896-901
   Abstract »    Full Text »    PDF »
De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment.
I. Olovnikov, S. Ryazansky, S. Shpiz, S. Lavrov, Y. Abramov, C. Vaury, S. Jensen, and A. Kalmykova (2013)
Nucleic Acids Res. 41, 5757-5768
   Abstract »    Full Text »    PDF »
Transposition-Driven Genomic Heterogeneity in the Drosophila Brain.
P. N. Perrat, S. DasGupta, J. Wang, W. Theurkauf, Z. Weng, M. Rosbash, and S. Waddell (2013)
Science 340, 91-95
   Abstract »    Full Text »    PDF »
piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.
L. J. T. Kaaij, S. W. Hoogstrate, E. Berezikov, and R. F. Ketting (2013)
RNA 19, 345-356
   Abstract »    Full Text »    PDF »
Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state.
A. Le Thomas, A. K. Rogers, A. Webster, G. K. Marinov, S. E. Liao, E. M. Perkins, J. K. Hur, A. A. Aravin, and K. F. Toth (2013)
Genes & Dev. 27, 390-399
   Abstract »    Full Text »    PDF »
The comprehensive epigenome map of piRNA clusters.
S. Kawaoka, K. Hara, K. Shoji, M. Kobayashi, T. Shimada, S. Sugano, Y. Tomari, Y. Suzuki, and S. Katsuma (2013)
Nucleic Acids Res. 41, 1581-1590
   Abstract »    Full Text »    PDF »
Dicer-2- and Piwi-Mediated RNA Interference in Rift Valley Fever Virus-Infected Mosquito Cells.
P. Leger, E. Lara, B. Jagla, O. Sismeiro, Z. Mansuroglu, J. Y. Coppee, E. Bonnefoy, and M. Bouloy (2013)
J. Virol. 87, 1631-1648
   Abstract »    Full Text »    PDF »
Targeted gene silencing in mouse germ cells by insertion of a homologous DNA into a piRNA generating locus.
Y. Yamamoto, T. Watanabe, Y. Hoki, K. Shirane, Y. Li, K. Ichiiyanagi, S. Kuramochi-Miyagawa, A. Toyoda, A. Fujiyama, M. Oginuma, et al. (2013)
Genome Res. 23, 292-299
   Abstract »    Full Text »    PDF »
Non-micro-short RNAs: the new kids on the block.
B. K. Dey, A. C. Mueller, and A. Dutta (2012)
Mol. Biol. Cell 23, 4664-4667
   Abstract »    Full Text »    PDF »
Crystal structure of the primary piRNA biogenesis factor Zucchini reveals similarity to the bacterial PLD endonuclease Nuc.
F. Voigt, M. Reuter, A. Kasaruho, E. C. Schulz, R. S. Pillai, and O. Barabas (2012)
RNA 18, 2128-2134
   Abstract »    Full Text »    PDF »
Small RNA Profile of the Cumulus-Oocyte Complex and Early Embryos in the Pig.
C.-X. Yang, Z.-Q. Du, E. C. Wright, M. F. Rothschild, R. S. Prather, and J. W. Ross (2012)
Biol Reprod 87, 117
   Abstract »    Full Text »    PDF »
The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors.
N. Mathioudakis, A. Palencia, J. Kadlec, A. Round, K. Tripsianes, M. Sattler, R. S. Pillai, and S. Cusack (2012)
RNA 18, 2056-2072
   Abstract »    Full Text »    PDF »
Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines.
H. Ishizu, H. Siomi, and M. C. Siomi (2012)
Genes & Dev. 26, 2361-2373
   Abstract »    Full Text »    PDF »
shutdown is a component of the Drosophila piRNA biogenesis machinery.
J. B. Preall, B. Czech, P. M. Guzzardo, F. Muerdter, and G. J. Hannon (2012)
RNA 18, 1446-1457
   Abstract »    Full Text »    PDF »
Tudor domain proteins in development.
J. W. Pek, A. Anand, and T. Kai (2012)
Development 139, 2255-2266
   Abstract »    Full Text »    PDF »
Functional parameters of Dicer-independent microRNA biogenesis.
J.-S. Yang, T. Maurin, and E. C. Lai (2012)
RNA 18, 945-957
   Abstract »    Full Text »    PDF »
The tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila.
A. Anand and T. Kai (2012)
EMBO J. 31, 870-882
   Abstract »    Full Text »    PDF »
A role for transcription from a piRNA cluster in de novo piRNA production.
S. Kawaoka, H. Mitsutake, T. Kiuchi, M. Kobayashi, M. Yoshikawa, Y. Suzuki, S. Sugano, T. Shimada, J. Kobayashi, Y. Tomari, et al. (2012)
RNA 18, 265-273
   Abstract »    Full Text »    PDF »
Production of artificial piRNAs in flies and mice.
F. Muerdter, I. Olovnikov, A. Molaro, N. V. Rozhkov, B. Czech, A. Gordon, G. J. Hannon, and A. A. Aravin (2012)
RNA 18, 42-52
   Abstract »    Full Text »    PDF »
Genome-wide expression of non-coding RNA and global chromatin modification.
R. Zhang, L. Zhang, and W. Yu (2012)
Acta Biochim Biophys Sin 44, 40-47
   Abstract »    Full Text »    PDF »
Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line.
S. H. Wang and S. C. R. Elgin (2011)
PNAS 108, 21164-21169
   Abstract »    Full Text »    PDF »
The silkworm W chromosome is a source of female-enriched piRNAs.
S. Kawaoka, K. Kadota, Y. Arai, Y. Suzuki, T. Fujii, H. Abe, Y. Yasukochi, K. Mita, S. Sugano, K. Shimizu, et al. (2011)
RNA 17, 2144-2151
   Abstract »    Full Text »    PDF »
The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective.
Y. Meng, C. Shao, H. Wang, and M. Chen (2011)
Plant Physiology 157, 1583-1595
   Full Text »    PDF »
RNA Granules in Germ Cells.
E. Voronina, G. Seydoux, P. Sassone-Corsi, and I. Nagamori (2011)
Cold Spring Harb Perspect Biol 3, a002774
   Abstract »    Full Text »    PDF »
The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline.
A. Pane, P. Jiang, D. Y. Zhao, M. Singh, and T. Schupbach (2011)
EMBO J. 30, 4601-4615
   Abstract »    Full Text »    PDF »
Maelstrom coordinates microtubule organization during Drosophila oogenesis through interaction with components of the MTOC.
K. Sato, K. M. Nishida, A. Shibuya, M. C. Siomi, and H. Siomi (2011)
Genes & Dev. 25, 2361-2373
   Abstract »    Full Text »    PDF »
Separation of stem cell maintenance and transposon silencing functions of Piwi protein.
M. S. Klenov, O. A. Sokolova, E. Y. Yakushev, A. D. Stolyarenko, E. A. Mikhaleva, S. A. Lavrov, and V. A. Gvozdev (2011)
PNAS 108, 18760-18765
   Abstract »    Full Text »    PDF »
A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors.
D. Handler, D. Olivieri, M. Novatchkova, F. S. Gruber, K. Meixner, K. Mechtler, A. Stark, R. Sachidanandam, and J. Brennecke (2011)
EMBO J. 30, 3977-3993
   Abstract »    Full Text »    PDF »
Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila.
A. L. Zamparini, M. Y. Davis, C. D. Malone, E. Vieira, J. Zavadil, R. Sachidanandam, G. J. Hannon, and R. Lehmann (2011)
Development 138, 4039-4050
   Abstract »    Full Text »    PDF »
A novel organelle, the piNG-body, in the nuage of Drosophila male germ cells is associated with piRNA-mediated gene silencing.
M. V. Kibanov, K. S. Egorova, S. S. Ryazansky, O. A. Sokolova, A. A. Kotov, O. M. Olenkina, A. D. Stolyarenko, V. A. Gvozdev, and L. V. Olenina (2011)
Mol. Biol. Cell 22, 3410-3419
   Abstract »    Full Text »    PDF »
RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries.
M. Hafner, N. Renwick, M. Brown, A. Mihailovic, D. Holoch, C. Lin, J. T. G. Pena, J. D. Nusbaum, P. Morozov, J. Ludwig, et al. (2011)
RNA 17, 1697-1712
   Abstract »    Full Text »    PDF »
BlastR--fast and accurate database searches for non-coding RNAs.
G. Bussotti, E. Raineri, I. Erb, M. Zytnicki, A. Wilm, E. Beaudoing, P. Bucher, and C. Notredame (2011)
Nucleic Acids Res. 39, 6886-6895
   Abstract »    Full Text »    PDF »
Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles.
J. Wang, B. Czech, A. Crunk, A. Wallace, M. Mitreva, G. J. Hannon, and R. E. Davis (2011)
Genome Res. 21, 1462-1477
   Abstract »    Full Text »    PDF »
Small Noncoding RNAs in the Germline.
J. P. Saxe and H. Lin (2011)
Cold Spring Harb Perspect Biol 3, a002717
   Abstract »    Full Text »    PDF »
Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish.
H.-Y. Huang, S. Houwing, L. J. T. Kaaij, A. Meppelink, S. Redl, S. Gauci, H. Vos, B. W. Draper, C. B. Moens, B. M. Burgering, et al. (2011)
EMBO J. 30, 3298-3308
   Abstract »    Full Text »    PDF »
Widespread expression of piRNA-like molecules in somatic tissues.
Z. Yan, H. Y. Hu, X. Jiang, V. Maierhofer, E. Neb, L. He, Y. Hu, H. Hu, N. Li, W. Chen, et al. (2011)
Nucleic Acids Res. 39, 6596-6607
   Abstract »    Full Text »    PDF »
DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation.
J. W. Pek and T. Kai (2011)
PNAS 108, 12007-12012
   Abstract »    Full Text »    PDF »
Zygotic amplification of secondary piRNAs during silkworm embryogenesis.
S. Kawaoka, Y. Arai, K. Kadota, Y. Suzuki, K. Hara, S. Sugano, K. Shimizu, Y. Tomari, T. Shimada, and S. Katsuma (2011)
RNA 17, 1401-1407
   Abstract »    Full Text »    PDF »
Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila.
J. V. Hartig and K. Forstemann (2011)
Nucleic Acids Res. 39, 3836-3851
   Abstract »    Full Text »    PDF »
Small RNAs in early mammalian development: from gametes to gastrulation.
N. Suh and R. Blelloch (2011)
Development 138, 1653-1661
   Abstract »    Full Text »    PDF »
PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition.
L. Liu, H. Qi, J. Wang, and H. Lin (2011)
Development 138, 1863-1873
   Abstract »    Full Text »    PDF »
A k-mer scheme to predict piRNAs and characterize locust piRNAs.
Y. Zhang, X. Wang, and L. Kang (2011)
Bioinformatics 27, 771-776
   Abstract »    Full Text »    PDF »
MicroRNA activity in the Arabidopsis male germline.
F. Borges, P. A. Pereira, R. K. Slotkin, R. A. Martienssen, and J. D. Becker (2011)
J. Exp. Bot. 62, 1611-1620
   Abstract »    Full Text »    PDF »
Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis.
V. R. Gerbasi, J. B. Preall, D. E. Golden, D. W. Powell, T. D. Cummins, and E. J. Sontheimer (2011)
PNAS 108, 3204-3209
   Abstract »    Full Text »    PDF »
R2D2 Organizes Small Regulatory RNA Pathways in Drosophila.
K. Okamura, N. Robine, Y. Liu, Q. Liu, and E. C. Lai (2011)
Mol. Cell. Biol. 31, 884-896
   Abstract »    Full Text »    PDF »
Production of Viable Gametes without Meiosis in Maize Deficient for an ARGONAUTE Protein.
M. Singh, S. Goel, R. B. Meeley, C. Dantec, H. Parrinello, C. Michaud, O. Leblanc, and D. Grimanelli (2011)
PLANT CELL 23, 443-458
   Abstract »    Full Text »    PDF »
Recurrent Adaptation in RNA Interference Genes Across the Drosophila Phylogeny.
B. Kolaczkowski, D. N. Hupalo, and A. D. Kern (2011)
Mol. Biol. Evol. 28, 1033-1042
   Abstract »    Full Text »    PDF »
The Long Arm of Long Noncoding RNAs: Roles as Sensors Regulating Gene Transcriptional Programs.
X. Wang, X. Song, C. K. Glass, and M. G. Rosenfeld (2011)
Cold Spring Harb Perspect Biol 3, a003756
   Abstract »    Full Text »    PDF »
A conserved germline multipotency program.
C. E. Juliano, S. Z. Swartz, and G. M. Wessel (2010)
Development 137, 4113-4126
   Abstract »    Full Text »    PDF »
Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis.
A. Nagao, T. Mituyama, H. Huang, D. Chen, M. C. Siomi, and H. Siomi (2010)
RNA 16, 2503-2515
   Abstract »    Full Text »    PDF »
Profiling Sex-Specific piRNAs in Zebrafish.
X. Zhou, Z. Zuo, F. Zhou, W. Zhao, Y. Sakaguchi, T. Suzuki, T. Suzuki, H. Cheng, and R. Zhou (2010)
Genetics 186, 1175-1185
   Abstract »    Full Text »    PDF »
piRNAs, transposon silencing, and Drosophila germline development.
J. S. Khurana and W. Theurkauf (2010)
J. Cell Biol. 191, 905-913
   Abstract »    Full Text »    PDF »
Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila.
A. D. Haase, S. Fenoglio, F. Muerdter, P. M. Guzzardo, B. Czech, D. J. Pappin, C. Chen, A. Gordon, and G. J. Hannon (2010)
Genes & Dev. 24, 2499-2504
   Abstract »    Full Text »    PDF »
Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila.
K. Saito, H. Ishizu, M. Komai, H. Kotani, Y. Kawamura, K. M. Nishida, H. Siomi, and M. C. Siomi (2010)
Genes & Dev. 24, 2493-2498
   Abstract »    Full Text »    PDF »
Hen1 is required for oocyte development and piRNA stability in zebrafish.
L. M. Kamminga, M. J. Luteijn, M. J. den Broeder, S. Redl, L. J. T. Kaaij, E. F. Roovers, P. Ladurner, E. Berezikov, and R. F. Ketting (2010)
EMBO J. 29, 3688-3700
   Abstract »    Full Text »    PDF »
A Small-RNA Perspective on Gametogenesis, Fertilization, and Early Zygotic Development.
D. Bourc'his and O. Voinnet (2010)
Science 330, 617-622
   Abstract »    Full Text »    PDF »
Drosophila I-R hybrid dysgenesis is associated with catastrophic meiosis and abnormal zygote formation.
G. A. Orsi, E. F. Joyce, P. Couble, K. S. McKim, and B. Loppin (2010)
J. Cell Sci. 123, 3515-3524
   Abstract »    Full Text »    PDF »
Somatic piRNA biogenesis.
P. D. Zamore (2010)
EMBO J. 29, 3219-3221
   Abstract »    Full Text »    PDF »
An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila.
D. Olivieri, M. M. Sykora, R. Sachidanandam, K. Mechtler, and J. Brennecke (2010)
EMBO J. 29, 3301-3317
   Abstract »    Full Text »    PDF »
Kinetic and functional analysis of the small RNA methyltransferase HEN1: The catalytic domain is essential for preferential modification of duplex RNA.
G. Vilkaitis, A. Plotnikova, and S. Klimasauskas (2010)
RNA 16, 1935-1942
   Abstract »    Full Text »    PDF »
Elective affinities: a Tudor-Aubergine tale of germline partnership.
A. Vourekas, Y. Kirino, and Z. Mourelatos (2010)
Genes & Dev. 24, 1963-1966
   Abstract »    Full Text »    PDF »
Cutting Edge: KIR Antisense Transcripts Are Processed into a 28-Base PIWI-Like RNA in Human NK Cells.
F. Cichocki, T. Lenvik, N. Sharma, G. Yun, S. K. Anderson, and J. S. Miller (2010)
J. Immunol. 185, 2009-2012
   Abstract »    Full Text »    PDF »
Small RNA-based silencing strategies for transposons in the process of invading Drosophila species.
N. V. Rozhkov, A. A. Aravin, E. S. Zelentsova, N. G. Schostak, R. Sachidanandam, W. R. McCombie, G. J. Hannon, and M. B. Evgen'ev (2010)
RNA 16, 1634-1645
   Abstract »    Full Text »    PDF »
MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs.
R. J. A. Frost, F. K. Hamra, J. A. Richardson, X. Qi, R. Bassel-Duby, and E. N. Olson (2010)
PNAS 107, 11847-11852
   Abstract »    Full Text »    PDF »
Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway.
K. Zheng, J. Xiol, M. Reuter, S. Eckardt, N. A. Leu, K. J. McLaughlin, A. Stark, R. Sachidanandam, R. S. Pillai, and P. J. Wang (2010)
PNAS 107, 11841-11846
   Abstract »    Full Text »    PDF »
Molecular Evolution of piRNA and Transposon Control Pathways in Drosophila.
C. D. Malone and G. J. Hannon (2010)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Transposable elements in natural populations of Drosophila melanogaster.
Y. C. G. Lee and C. H. Langley (2010)
Phil Trans R Soc B 365, 1219-1228
   Abstract »    Full Text »    PDF »
Human tRNA-derived small RNAs in the global regulation of RNA silencing.
D. Haussecker, Y. Huang, A. Lau, P. Parameswaran, A. Z. Fire, and M. A. Kay (2010)
RNA 16, 673-695
   Abstract »    Full Text »    PDF »
How does the Royal Family of Tudor rule the PIWI-interacting RNA pathway?.
M. C. Siomi, T. Mannen, and H. Siomi (2010)
Genes & Dev. 24, 636-646
   Abstract »    Full Text »    PDF »
Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila.
J. Lu and A. G. Clark (2010)
Genome Res. 20, 212-227
   Abstract »    Full Text »    PDF »
The Arabidopsis RNA-Directed DNA Methylation Argonautes Functionally Diverge Based on Their Expression and Interaction with Target Loci.
E. R. Havecker, L. M. Wallbridge, T. J. Hardcastle, M. S. Bush, K. A. Kelly, R. M. Dunn, F. Schwach, J. H. Doonan, and D. C. Baulcombe (2010)
PLANT CELL 22, 321-334
   Abstract »    Full Text »    PDF »
Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs.
Q. Wu, Y. Luo, R. Lu, N. Lau, E. C. Lai, W.-X. Li, and S.-W. Ding (2010)
PNAS 107, 1606-1611
   Abstract »    Full Text »    PDF »
Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization.
Y. Kirino, A. Vourekas, N. Sayed, F. de Lima Alves, T. Thomson, P. Lasko, J. Rappsilber, T. A. Jongens, and Z. Mourelatos (2010)
RNA 16, 70-78
   Abstract »    Full Text »    PDF »
Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines.
K. M. Nishida, T. N. Okada, T. Kawamura, T. Mituyama, Y. Kawamura, S. Inagaki, H. Huang, D. Chen, T. Kodama, H. Siomi, et al. (2009)
EMBO J. 28, 3820-3831
   Abstract »    Full Text »    PDF »
The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila.
D. Fagegaltier, A.-L. Bouge, B. Berry, E. Poisot, O. Sismeiro, J.-Y. Coppee, L. Theodore, O. Voinnet, and C. Antoniewski (2009)
PNAS 106, 21258-21263
   Abstract »    Full Text »    PDF »
Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR.
N. Liu, H. Han, and P. Lasko (2009)
Genes & Dev. 23, 2742-2752
   Abstract »    Full Text »    PDF »
Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi.
C. Chen, J. Jin, D. A. James, M. A. Adams-Cioaba, J. G. Park, Y. Guo, E. Tenaglia, C. Xu, G. Gish, J. Min, et al. (2009)
PNAS 106, 20336-20341
   Abstract »    Full Text »    PDF »
Retrotransposons and non-protein coding RNAs.
T. Mourier and E. Willerslev (2009)
Briefings in Functional Genomics 8, 493-501
   Abstract »    Full Text »    PDF »
Subtraction by addition: domesticated transposases in programmed DNA elimination.
J. A. Motl and D. L. Chalker (2009)
Genes & Dev. 23, 2455-2460
   Abstract »    Full Text »    PDF »
Editing independent effects of ADARs on the miRNA/siRNA pathways.
B. S. E. Heale, L. P. Keegan, L. McGurk, G. Michlewski, J. Brindle, C. M. Stanton, J. F. Caceres, and M. A. O'Connell (2009)
EMBO J. 28, 3145-3156
   Abstract »    Full Text »    PDF »
Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1.
C. Mui Chan, C. Zhou, J. S. Brunzelle, and R. H. Huang (2009)
PNAS 106, 17699-17704
   Abstract »    Full Text »    PDF »
Reconstituting Bacterial RNA Repair and Modification in Vitro.
C. M. Chan, C. Zhou, and R. H. Huang (2009)
Science 326, 247
   Abstract »    Full Text »    PDF »
Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences.
J. V. Hartig, S. Esslinger, R. Bottcher, K. Saito, and K. Forstemann (2009)
EMBO J. 28, 2932-2944
   Abstract »    Full Text »    PDF »
Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi.
N. C. Lau, T. Ohsumi, M. Borowsky, R. E. Kingston, and M. D. Blower (2009)
EMBO J. 28, 2945-2958
   Abstract »    Full Text »    PDF »
Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line.
N. C. Lau, N. Robine, R. Martin, W.-J. Chung, Y. Niki, E. Berezikov, and E. C. Lai (2009)
Genome Res. 19, 1776-1785
   Abstract »    Full Text »    PDF »
piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline.
A. K. Lim, L. Tao, and T. Kai (2009)
J. Cell Biol. 186, 333-342
   Abstract »    Full Text »    PDF »
Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members.
V. V. Vagin, J. Wohlschlegel, J. Qu, Z. Jonsson, X. Huang, S. Chuma, A. Girard, R. Sachidanandam, G. J. Hannon, and A. A. Aravin (2009)
Genes & Dev. 23, 1749-1762
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882