Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 313 (5786): 526-530

Copyright © 2006 by the American Association for the Advancement of Science

Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

Martin Metz,1 Adrian M. Piliponsky,1 Ching-Cheng Chen,1 Verena Lammel,1 Magnus Åbrink,2 Gunnar Pejler,2 Mindy Tsai,1 Stephen J. Galli1*

Abstract: Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom–induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

1 Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305–5324, USA.
2 Department of Molecular Biosciences, Swedish University of Agricultural Sciences, The Biomedical Center, Box 575, 751 23 Uppsala, Sweden.

* To whom correspondence should be addressed. E-mail: sgalli{at}

Rab5 Is a Novel Regulator of Mast Cell Secretory Granules: Impact on Size, Cargo, and Exocytosis.
N. P. Azouz, N. Zur, A. Efergan, N. Ohbayashi, M. Fukuda, D. Amihai, I. Hammel, M. E. Rothenberg, and R. Sagi-Eisenberg (2014)
J. Immunol. 192, 4043-4053
   Abstract »    Full Text »    PDF »
Mast Cell Chymase Degrades the Alarmins Heat Shock Protein 70, Biglycan, HMGB1, and Interleukin-33 (IL-33) and Limits Danger-induced Inflammation.
A. Roy, G. Ganesh, H. Sippola, S. Bolin, O. Sawesi, A. Dagalv, S. M. Schlenner, T. Feyerabend, H.-R. Rodewald, L. Kjellen, et al. (2014)
J. Biol. Chem. 289, 237-250
   Abstract »    Full Text »    PDF »
Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases.
S. Tanco, J. Lorenzo, J. Garcia-Pardo, S. Degroeve, L. Martens, F. X. Aviles, K. Gevaert, and P. Van Damme (2013)
Mol. Cell. Proteomics 12, 2096-2110
   Abstract »    Full Text »    PDF »
Intestinal Lin-c-Kit+NKp46-CD4- Population Strongly Produces IL-22 upon IL-1{beta} Stimulation.
Y. Lee, Y. Kumagai, M. S. Jang, J.-H. Kim, B.-G. Yang, E.-J. Lee, Y.-M. Kim, S. Akira, and M. H. Jang (2013)
J. Immunol. 190, 5296-5305
   Abstract »    Full Text »    PDF »
Innate Immunity and Its Regulation by Mast Cells.
A. L. St. John and S. N. Abraham (2013)
J. Immunol. 190, 4458-4463
   Abstract »    Full Text »    PDF »
Heparan Sulfate 6-O-Sulfotransferase Isoform-dependent Regulatory Effects of Heparin on the Activities of Various Proteases in Mast Cells and the Biosynthesis of 6-O-Sulfated Heparin.
M. F. Anower-E-Khuda, H. Habuchi, N. Nagai, O. Habuchi, T. Yokochi, and K. Kimata (2013)
J. Biol. Chem. 288, 3705-3717
   Abstract »    Full Text »    PDF »
Role of the inflammasome in defense against venoms.
N. W. Palm and R. Medzhitov (2013)
PNAS 110, 1809-1814
   Abstract »    Full Text »    PDF »
Bites in Australian snake handlers--Australian snakebite project (ASP-15).
G. K. Isbister, S. G. A. Brown, and for the ASP Investigators (2012)
QJM 105, 1089-1095
   Abstract »    Full Text »    PDF »
Genetic Evidence for Critical Roles of P38{alpha} Protein in Regulating Mast Cell Differentiation and Chemotaxis through Distinct Mechanisms.
P. Hu, N. Carlesso, M. Xu, Y. Liu, A. R. Nebreda, C. Takemoto, and R. Kapur (2012)
J. Biol. Chem. 287, 20258-20269
   Abstract »    Full Text »    PDF »
A Novel Heparin-dependent Inhibitor of Activated Protein C That Potentiates Consumptive Coagulopathy in Russell's Viper Envenomation.
A.-C. Cheng, H.-L. Wu, G.-Y. Shi, and I.-H. Tsai (2012)
J. Biol. Chem. 287, 15739-15748
   Abstract »    Full Text »    PDF »
Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom.
E. d. P. Mendonca-Franqueiro, R. d. M. Alves-Paiva, M. A. Sartim, D. R. Callejon, H. H. Paiva, G. A. Antonucci, J. C. Rosa, A. C. O. Cintra, J. J. Franco, E. C. Arantes, et al. (2011)
Acta Biochim Biophys Sin 43, 181-192
   Abstract »    Full Text »    PDF »
Serglycin-independent Release of Active Mast Cell Proteases in Response to Toxoplasma gondii Infection.
O. Sawesi, D. Spillmann, A. Lunden, S. Wernersson, and M. Abrink (2010)
J. Biol. Chem. 285, 38005-38013
   Abstract »    Full Text »    PDF »
Mouse Mast Cell Protease-4 Deteriorates Renal Function by Contributing to Inflammation and Fibrosis in Immune Complex-Mediated Glomerulonephritis.
L. Scandiuzzi, W. Beghdadi, E. Daugas, M. Abrink, N. Tiwari, C. Brochetta, J. Claver, N. Arouche, X. Zang, M. Pretolani, et al. (2010)
J. Immunol. 185, 624-633
   Abstract »    Full Text »    PDF »
Mast cell proteases: multifaceted regulators of inflammatory disease.
G. Pejler, E. Ronnberg, I. Waern, and S. Wernersson (2010)
Blood 115, 4981-4990
   Abstract »    Full Text »    PDF »
Nerve Growth Factor Inhibits Metalloproteinase-Disintegrins and Blocks Ectodomain Shedding of Platelet Glycoprotein VI.
L. C. Wijeyewickrema, E. E. Gardiner, E. L. Gladigau, M. C. Berndt, and R. K. Andrews (2010)
J. Biol. Chem. 285, 11793-11799
   Abstract »    Full Text »    PDF »
Sphingosine-1-phosphate induces development of functionally mature chymase-expressing human mast cells from hematopoietic progenitors.
M. M. Price, D. Kapitonov, J. Allegood, S. Milstien, C. A. Oskeritzian, and S. Spiegel (2009)
FASEB J 23, 3506-3515
   Abstract »    Full Text »    PDF »
Bone Marrow-Derived Mast Cells Accumulate in the Central Nervous System During Inflammation but Are Dispensable for Experimental Autoimmune Encephalomyelitis Pathogenesis.
J. L. Bennett, M.-R. Blanchet, L. Zhao, L. Zbytnuik, F. Antignano, M. Gold, P. Kubes, and K. M. McNagny (2009)
J. Immunol. 182, 5507-5514
   Abstract »    Full Text »    PDF »
Basophil effector function and homeostasis during helminth infection.
C. Ohnmacht and D. Voehringer (2009)
Blood 113, 2816-2825
   Abstract »    Full Text »    PDF »
Contributions of F-BAR and SH2 Domains of Fes Protein Tyrosine Kinase for Coupling to the Fc{varepsilon}RI Pathway in Mast Cells.
V. A. McPherson, S. Everingham, R. Karisch, J. A. Smith, C. M. Udell, J. Zheng, Z. Jia, and A. W. B. Craig (2009)
Mol. Cell. Biol. 29, 389-401
   Abstract »    Full Text »    PDF »
G. H. Caughey, J. Beauchamp, D. Schlatter, W. W. Raymond, N. N. Trivedi, D. Banner, H. Mauser, and J. Fingerle (2008)
J. Biol. Chem. 283, 13943-13951
   Abstract »    Full Text »    PDF »
IL-10 Suppresses Mast Cell IgE Receptor Expression and Signaling In Vitro and In Vivo.
S. Kennedy Norton, B. Barnstein, J. Brenzovich, D. P. Bailey, M. Kashyap, K. Speiran, J. Ford, D. Conrad, S. Watowich, M. R. Moralle, et al. (2008)
J. Immunol. 180, 2848-2854
   Abstract »    Full Text »    PDF »
Mast cell deficiency in KitW-sh mice does not impair antibody-mediated arthritis.
J. S. Zhou, W. Xing, D. S. Friend, K. F. Austen, and H. R. Katz (2007)
J. Exp. Med. 204, 2797-2802
   Abstract »    Full Text »    PDF »
Molecular mechanism of mast cell mediated innate defense against endothelin and snake venom sarafotoxin.
L. A. Schneider, S. M. Schlenner, T. B. Feyerabend, M. Wunderlin, and H.-R. Rodewald (2007)
J. Exp. Med. 204, 2629-2639
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882