Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 313 (5787): 640-644

Copyright © 2006 by the American Association for the Advancement of Science

Netrins Promote Developmental and Therapeutic Angiogenesis

Brent D. Wilson,1,2* Masaaki Ii,7*{dagger} Kye Won Park,1,3* Arminda Suli,4* Lise K. Sorensen,2 Fréderic Larrieu-Lahargue,1 Lisa D. Urness,1,2 Wonhee Suh,1{ddagger} Jun Asai,7 Gerhardus A.H. Kock,7§ Tina Thorne,7 Marcy Silver,7 Kirk R. Thomas,1,5 Chi-Bin Chien,4,6|| Douglas W. Losordo,7|| Dean Y. Li3||

Abstract: Axonal guidance and vascular patterning share several guidance cues, including proteins in the netrin family. We demonstrate that netrins stimulate proliferation, migration, and tube formation of human endothelial cells in vitro and that this stimulation is independent of known netrin receptors. Suppression of netrin1a messenger RNA in zebrafish inhibits vascular sprouting, implying a proangiogenic role for netrins during vertebrate development. We also show that netrins accelerate neovascularization in an in vivo model of ischemia and that they reverse neuropathy and vasculopathy in a diabetic murine model. We propose that the attractive vascular and neural guidance functions of netrins offer a unique therapeutic potential.

1 Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112, USA.
2 Division of Cardiology, University of Utah, Salt Lake City, UT 84112, USA.
3 Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
4 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
5 Division of Hematology, University of Utah, Salt Lake City, UT 84112, USA.
6 Brain Institute, University of Utah, Salt Lake City, UT 84112, USA.
7 Division of Cardiovascular Research, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA.

* These authors contributed equally to this work.

{dagger} Present address: Stem Cell Translational Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.

{ddagger} Present address: Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-Ku, Seoul 135-710, Korea.

§ Present address: Department of Cardiology, Thoraxcenter, University Medical Center Groningen, University Groningen, 30.001 Groningen, Netherlands.

|| To whom correspondence should be addressed. E-mail:{at} (D.Y.L.); douglas.losordo{at} (D.W.L.); chi-bin.chien{at} (C.B.C)

UNC5B Receptor Deletion Exacerbates Tissue Injury in Response to AKI.
P. Ranganathan, C. Jayakumar, S. Navankasattusas, D. Y. Li, I.-m. Kim, and G. Ramesh (2014)
J. Am. Soc. Nephrol. 25, 239-249
   Abstract »    Full Text »    PDF »
C. elegans PVF-1 inhibits permissive UNC-40 signalling through CED-10 GTPase to position the male ray 1 sensillum.
G. Dalpe, M. Tarsitano, M. G. Persico, H. Zheng, and J. Culotti (2013)
Development 140, 4020-4030
   Abstract »    Full Text »    PDF »
Netrin 1 contributes to vascular remodeling in the subventricular zone and promotes progenitor emigration after demyelination.
M. Cayre, S. Courtes, F. Martineau, M. Giordano, K. Arnaud, A. Zamaron, and P. Durbec (2013)
Development 140, 3107-3117
   Abstract »    Full Text »    PDF »
The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo.
E. J. Hagedorn, J. W. Ziel, M. A. Morrissey, L. M. Linden, Z. Wang, Q. Chi, S. A. Johnson, and D. R. Sherwood (2013)
J. Cell Biol. 201, 903-913
   Abstract »    Full Text »    PDF »
Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature.
K. Koltowska, K. L. Betterman, N. L. Harvey, and B. M. Hogan (2013)
Development 140, 1857-1870
   Abstract »    Full Text »    PDF »
Netrin-1 Promotes Glioblastoma Cell Invasiveness and Angiogenesis by Multiple Pathways Including Activation of RhoA, Cathepsin B, and cAMP-response Element-binding Protein.
A. Shimizu, H. Nakayama, P. Wang, C. Konig, T. Akino, J. Sandlund, S. Coma, J. E. Italiano Jr., A. Mammoto, D. R. Bielenberg, et al. (2013)
J. Biol. Chem. 288, 2210-2222
   Abstract »    Full Text »    PDF »
Eyeing central neurons in vascular growth and reparative angiogenesis.
P. Sapieha (2012)
Blood 120, 2182-2194
   Abstract »    Full Text »    PDF »
Sonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk.
C. S. Horndli and C.-B. Chien (2012)
Development 139, 2604-2613
   Abstract »    Full Text »    PDF »
Netrin-1 Simultaneously Suppresses Corneal Inflammation and Neovascularization.
Y. Han, Y. Shao, Z. Lin, Y.-L. Qu, H. Wang, Y. Zhou, W. Chen, Y. Chen, W.-L. Chen, F.-R. Hu, et al. (2012)
Invest. Ophthalmol. Vis. Sci. 53, 1285-1295
   Abstract »    Full Text »    PDF »
Netrin-1 Hyperexpression in Mouse Brain Promotes Angiogenesis and Long-Term Neurological Recovery After Transient Focal Ischemia.
H. Lu, Y. Wang, X. He, F. Yuan, X. Lin, B. Xie, G. Tang, J. Huang, Y. Tang, K. Jin, et al. (2012)
Stroke 43, 838-843
   Abstract »    Full Text »    PDF »
Netrin-4 Acts as a Pro-angiogenic Factor during Zebrafish Development.
E. Lambert, M.-M. Coissieux, V. Laudet, and P. Mehlen (2012)
J. Biol. Chem. 287, 3987-3999
   Abstract »    Full Text »    PDF »
Autotaxin Regulates Vascular Development via Multiple Lysophosphatidic Acid (LPA) Receptors in Zebrafish.
H. Yukiura, K. Hama, K. Nakanaga, M. Tanaka, Y. Asaoka, S. Okudaira, N. Arima, A. Inoue, T. Hashimoto, H. Arai, et al. (2011)
J. Biol. Chem. 286, 43972-43983
   Abstract »    Full Text »    PDF »
Motoneurons are essential for vascular pathfinding.
A. H. Lim, A. Suli, K. Yaniv, B. Weinstein, D. Y. Li, and C.-B. Chien (2011)
Development 138, 3847-3857
   Abstract »    Full Text »    PDF »
Laminar and Areal Expression of Unc5d and Its Role in Cortical Cell Survival.
M. Takemoto, Y. Hattori, H. Zhao, H. Sato, A. Tamada, S. Sasaki, K. Nakajima, and N. Yamamoto (2011)
Cereb Cortex 21, 1925-1934
   Abstract »    Full Text »    PDF »
Netrins: versatile extracellular cues with diverse functions.
K. L. W. Sun, J. P. Correia, and T. E. Kennedy (2011)
Development 138, 2153-2169
   Abstract »    Full Text »    PDF »
Assembly and patterning of the vascular network of the vertebrate hindbrain.
M. Fujita, Y. R. Cha, V. N. Pham, A. Sakurai, B. L. Roman, J. S. Gutkind, and B. M. Weinstein (2011)
Development 138, 1705-1715
   Abstract »    Full Text »    PDF »
The Rac1 Regulator ELMO1 Controls Vascular Morphogenesis in Zebrafish.
D. Epting, B. Wendik, K. Bennewitz, C. T. Dietz, W. Driever, and J. Kroll (2010)
Circ. Res. 107, 45-55
   Abstract »    Full Text »    PDF »
Neuronal-Driven Angiogenesis: Role of NGF in Retinal Neovascularization in an Oxygen-Induced Retinopathy Model.
X. Liu, D. Wang, Y. Liu, Y. Luo, W. Ma, W. Xiao, and Q. Yu (2010)
Invest. Ophthalmol. Vis. Sci. 51, 3749-3757
   Abstract »    Full Text »    PDF »
Netrin-4 induces lymphangiogenesis in vivo.
F. Larrieu-Lahargue, A. L. Welm, K. R. Thomas, and D. Y. Li (2010)
Blood 115, 5418-5426
   Abstract »    Full Text »    PDF »
Repulsive axon guidance molecule Slit3 is a novel angiogenic factor.
B. Zhang, U. M. Dietrich, J.-G. Geng, R. Bicknell, J. D. Esko, and L. Wang (2009)
Blood 114, 4300-4309
   Abstract »    Full Text »    PDF »
The Hedgehog Transcription Factor Gli3 Modulates Angiogenesis.
M.-A. Renault, J. Roncalli, J. Tongers, S. Misener, T. Thorne, K. Jujo, A. Ito, T. Clarke, C. Fung, M. Millay, et al. (2009)
Circ. Res. 105, 818-826
   Abstract »    Full Text »    PDF »
Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells.
Y. C. Yung, J. Chae, M. J. Buehler, C. P. Hunter, and D. J. Mooney (2009)
PNAS 106, 15279-15284
   Abstract »    Full Text »    PDF »
Netrin-1 acts as a survival factor for aggressive neuroblastoma.
C. Delloye-Bourgeois, J. Fitamant, A. Paradisi, D. Cappellen, S. Douc-Rasy, M.-A. Raquin, D. Stupack, A. Nakagawara, R. Rousseau, V. Combaret, et al. (2009)
J. Exp. Med. 206, 833-847
   Abstract »    Full Text »    PDF »
Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor.
W. Wang, W. B. Reeves, and G. Ramesh (2009)
Am J Physiol Renal Physiol 296, F723-F729
   Abstract »    Full Text »    PDF »
Guidance of Vascular Development: Lessons From the Nervous System.
B. Larrivee, C. Freitas, S. Suchting, I. Brunet, and A. Eichmann (2009)
Circ. Res. 104, 428-441
   Abstract »    Full Text »    PDF »
Discovery of a functional protein complex of netrin-4, laminin {gamma}1 chain, and integrin {alpha}6{beta}1 in mouse neural stem cells.
F. I. Staquicini, E. Dias-Neto, J. Li, E. Y. Snyder, R. L. Sidman, R. Pasqualini, and W. Arap (2009)
PNAS 106, 2903-2908
   Abstract »    Full Text »    PDF »
Interference With Netrin-1 and Tumor Cell Death in Non-Small Cell Lung Cancer.
C. Delloye-Bourgeois, E. Brambilla, M.-M. Coissieux, C. Guenebeaud, R. Pedeux, V. Firlej, F. Cabon, C. Brambilla, P. Mehlen, and A. Bernet (2009)
J Natl Cancer Inst 101, 237-247
   Abstract »    Full Text »    PDF »
Cross-repressive interactions between Lrig3 and netrin 1 shape the architecture of the inner ear.
V. E. Abraira, T. del Rio, A. F. Tucker, J. Slonimsky, H. L. Keirnes, and L. V. Goodrich (2008)
Development 135, 4091-4099
   Abstract »    Full Text »    PDF »
Netrin-1 Induces Apoptosis in Human Cervical Tumor Cells via the TAp73{alpha} Tumor Suppressor.
J.-P. Roperch, K. El Ouadrani, A. Hendrix, S. Emami, O. De Wever, G. Melino, and C. Gespach (2008)
Cancer Res. 68, 8231-8239
   Abstract »    Full Text »    PDF »
Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points.
A. J. Pittman, M.-Y. Law, and C.-B. Chien (2008)
Development 135, 2865-2871
   Abstract »    Full Text »    PDF »
Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B.
E. Lejmi, L. Leconte, S. Pedron-Mazoyer, S. Ropert, W. Raoul, S. Lavalette, I. Bouras, J.-G. Feron, M. Maitre-Boube, F. Assayag, et al. (2008)
PNAS 105, 12491-12496
   Abstract »    Full Text »    PDF »
Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and neogenin.
R. Kuns-Hashimoto, D. Kuninger, M. Nili, and P. Rotwein (2008)
Am J Physiol Cell Physiol 294, C994-C1003
   Abstract »    Full Text »    PDF »
Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury.
W. Brian Reeves, O. Kwon, and G. Ramesh (2008)
Am J Physiol Renal Physiol 294, F731-F738
   Abstract »    Full Text »    PDF »
Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney.
W. Wang, W. Brian Reeves, and G. Ramesh (2008)
Am J Physiol Renal Physiol 294, F739-F747
   Abstract »    Full Text »    PDF »
The netrin receptor UNC5B promotes angiogenesis in specific vascular beds.
S. Navankasattusas, K. J. Whitehead, A. Suli, L. K. Sorensen, A. H. Lim, J. Zhao, K. W. Park, J. D. Wythe, K. R. Thomas, C.-B. Chien, et al. (2008)
Development 135, 659-667
   Abstract »    Full Text »    PDF »
Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis.
B. Larrivee, C. Freitas, M. Trombe, X. Lv, B. DeLafarge, L. Yuan, K. Bouvree, C. Breant, R. Del Toro, N. Brechot, et al. (2007)
Genes & Dev. 21, 2433-2447
   Abstract »    Full Text »    PDF »
Identification of NTN4, TRA1, and STC2 as Prognostic Markers in Breast Cancer in a Screen for Signal Sequence Encoding Proteins.
S. Esseghir, A. Kennedy, P. Seedhar, A. Nerurkar, R. Poulsom, J. S. Reis-Filho, and C. M. Isacke (2007)
Clin. Cancer Res. 13, 3164-3173
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882