Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 313 (5787): 644-649

Copyright © 2006 by the American Association for the Advancement of Science

The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles

António M. Pregueiro,1 Qiuyun Liu,3 Christopher L. Baker,1 Jay C. Dunlap,1* Jennifer J. Loros1,2*

Abstract: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.

1 Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
2 Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA.
3 The Key Laboratory of Gene Engineering of Ministry of Education and Biotechnology Research Center, Zhongshan University, Guangzhou 510275, P. R. China.

* To whom correspondence should be addressed. E-mail: jay.c.dunlap{at}dartmouth.edu (J.C.D.); jennifer.loros{at}dartmouth.edu (J.J.L.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Circadian rhythms synchronize mitosis in Neurospora crassa.
C. I. Hong, J. Zamborszky, M. Baek, L. Labiscsak, K. Ju, H. Lee, L. F. Larrondo, A. Goity, H. S. Chong, W. J. Belden, et al. (2014)
PNAS 111, 1397-1402
   Abstract »    Full Text »    PDF »
PML regulates PER2 nuclear localization and circadian function.
T. Miki, Z. Xu, M. Chen-Goodspeed, M. Liu, A. Van Oort-Jansen, M. A. Rea, Z. Zhao, C. C. Lee, and K.-S. Chang (2012)
EMBO J. 31, 1427-1439
   Abstract »    Full Text »    PDF »
Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa.
G. Park, J. A. Servin, G. E. Turner, L. Altamirano, H. V. Colot, P. Collopy, L. Litvinkova, L. Li, C. A. Jones, F.-G. Diala, et al. (2011)
Eukaryot. Cell 10, 1553-1564
   Abstract »    Full Text »    PDF »
The Role of the Arabidopsis Morning Loop Components CCA1, LHY, PRR7, and PRR9 in Temperature Compensation.
P. A. Salome, D. Weigel, and C. R. McClung (2010)
PLANT CELL 22, 3650-3661
   Abstract »    Full Text »    PDF »
Effects of prd Circadian Clock Mutations on FRQ-Less Rhythms in Neurospora.
S. Li and P. Lakin-Thomas (2010)
J Biol Rhythms 25, 71-80
   Abstract »    PDF »
Circadian Proteins and Genotoxic Stress Response.
M. P. Antoch and R. V. Kondratov (2010)
Circ. Res. 106, 68-78
   Abstract »    Full Text »    PDF »
A role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis.
N. Mielnichuk, C. Sgarlata, and J. Perez-Martin (2009)
J. Cell Sci. 122, 4130-4140
   Abstract »    Full Text »    PDF »
Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events.
C.-T. Tang, S. Li, C. Long, J. Cha, G. Huang, L. Li, S. Chen, and Y. Liu (2009)
PNAS 106, 10722-10727
   Abstract »    Full Text »    PDF »
A Phylogenetically Conserved DNA Damage Response Resets the Circadian Clock.
J. J. Gamsby, J. J. Loros, and J. C. Dunlap (2009)
J Biol Rhythms 24, 193-202
   Abstract »    PDF »
Drosophila and Vertebrate Casein Kinase I{delta} Exhibits Evolutionary Conservation of Circadian Function.
J.-Y. Fan, F. Preuss, M. J. Muskus, E. S. Bjes, and J. L. Price (2009)
Genetics 181, 139-152
   Abstract »    Full Text »    PDF »
S-Phase and M-Phase Timing Are under Independent Circadian Control in the Dinoflagellate Lingulodinium.
S. Dagenais-Bellefeuille, T. Bertomeu, and D. Morse (2008)
J Biol Rhythms 23, 400-408
   Abstract »    PDF »
The green yeast uses its plant-like clock to regulate its animal-like tail.
M. Brunner and M. Merrow (2008)
Genes & Dev. 22, 825-831
   Full Text »    PDF »
A systematic forward genetic analysis identified components of the Chlamydomonas circadian system.
T. Matsuo, K. Okamoto, K. Onai, Y. Niwa, K. Shimogawara, and M. Ishiura (2008)
Genes & Dev. 22, 918-930
   Abstract »    Full Text »    PDF »
Genetic Interactions of the Aspergillus nidulans atmAATM Homolog With Different Components of the DNA Damage Response Pathway.
I. Malavazi, J. F. Lima, P. A. de Castro, M. Savoldi, M. H. de Souza Goldman, and G. H. Goldman (2008)
Genetics 178, 675-691
   Abstract »    Full Text »    PDF »
Salad Days in the Rhythms Trade.
J. C. Dunlap (2008)
Genetics 178, 1-13
   Full Text »    PDF »
Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control.
J. Zamborszky, C. I. Hong, and A. Csikasz Nagy (2007)
J Biol Rhythms 22, 542-553
   Abstract »    PDF »
Quantitative Trait Loci for the Circadian Clock in Neurospora crassa.
T.-S. Kim, B. A. Logsdon, S. Park, J. G. Mezey, and K. Lee (2007)
Genetics 177, 2335-2347
   Abstract »    Full Text »    PDF »
Tumor Suppression and Circadian Function.
M. Chen-Goodspeed and Cheng Chi Lee (2007)
J Biol Rhythms 22, 291-298
   Abstract »    PDF »
Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity.
Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. McKnight (2007)
Science 316, 1916-1919
   Abstract »    Full Text »    PDF »
Circadian Rhythms in Neurospora crassa: Clock Mutant Effects in the Absence of a frq-Based Oscillator.
L. Lombardi, K. Schneider, M. Tsukamoto, and S. Brody (2007)
Genetics 175, 1175-1183
   Abstract »    Full Text »    PDF »
Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation.
B. H. Miller, E. L. McDearmon, S. Panda, K. R. Hayes, J. Zhang, J. L. Andrews, M. P. Antoch, J. R. Walker, K. A. Esser, J. B. Hogenesch, et al. (2007)
PNAS 104, 3342-3347
   Abstract »    Full Text »    PDF »
Quantitative performance metrics for robustness in circadian rhythms.
N. Bagheri, J. Stelling, and F. J. Doyle III (2007)
Bioinformatics 23, 358-364
   Abstract »    Full Text »    PDF »
A Circadian Clock in Neurospora: How Genes and Proteins Cooperate to Produce a Sustained, Entrainable, and Compensated Biological Oscillator with a Period of about a Day.
J.C. Dunlap, J.J. Loros, H.V. Colot, A. Mehra, W.J. Belden, M. Shi, C.I. Hong, L.F. Larrondo, C.L. Baker, C.-H. Chen, et al. (2007)
Cold Spring Harb Symp Quant Biol 72, 57-68
   Abstract »    PDF »
Posttranslational Regulation of Neurospora Circadian Clock by CK1a-dependent Phosphorylation.
C. Querfurth, A. Diernfellner, F. Heise, L. Lauinger, A. Neiss, O. Tataroglu, M. Brunner, and T. Schafmeier (2007)
Cold Spring Harb Symp Quant Biol 72, 177-183
   Abstract »    PDF »
Circadian Output, Input, and Intracellular Oscillators: Insights into the Circadian Systems of Single Cells.
J. J. Loros, J. C. Dunlap, L. F. Larrondo, M. Shi, W. J. Belden, V. D. Gooch, C.-H. Chen, C. L. Baker, A. Mehra, H. V. Colot, et al. (2007)
Cold Spring Harb Symp Quant Biol 72, 201-214
   Abstract »    PDF »
The Rhythms of Life: Circadian Output Pathways in Neurospora.
M. W. Vitalini, R. M. de Paula, W. D. Park, and D. Bell-Pedersen (2006)
J Biol Rhythms 21, 432-444
   Abstract »    PDF »
Proteins in the Neurospora Circadian Clockworks.
J. C. Dunlap (2006)
J. Biol. Chem. 281, 28489-28493
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882