Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 314 (5797): 300-304

Copyright © 2006 by the American Association for the Advancement of Science

Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions

Narasimhan Sudarsan,1* Ming C. Hammond,2* Kirsten F. Block,1 Rüdiger Welz,1 Jeffrey E. Barrick,3 Adam Roth,3 Ronald R. Breaker1,2,3{dagger}

Abstract: Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors.

1 Department of Molecular, Cellular and Developmental Biology, Yale University, Post Office Box 208103, New Haven, CT 06520–8103, USA.
2 Howard Hughes Medical Institute, Yale University, Post Office Box 208103, New Haven, CT 06520–8103, USA.
3 Department of Molecular Biophysics and Biochemistry, Yale University, Post Office Box 208103, New Haven, CT 06520–8103, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: ronald.breaker{at}

Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
K. C. Suddala, A. J. Rinaldi, J. Feng, A. M. Mustoe, C. D. Eichhorn, J. A. Liberman, J. E. Wedekind, H. M. Al-Hashimi, C. L. Brooks III, and N. G. Walter (2013)
Nucleic Acids Res. 41, 10462-10475
   Abstract »    Full Text »    PDF »
Diversity of Cobalamin Riboswitches in the Corrinoid-Producing Organohalide Respirer Desulfitobacterium hafniense.
P. K. Choudhary, A. Duret, E. Rohrbach-Brandt, C. Holliger, R. K. O. Sigel, and J. Maillard (2013)
J. Bacteriol. 195, 5186-5195
   Abstract »    Full Text »    PDF »
Posttranscriptional Self-Regulation by the Lyme Disease Bacterium's BpuR DNA/RNA-Binding Protein.
B. L. Jutras, G. S. Jones, A. Verma, N. A. Brown, A. D. Antonicello, A. M. Chenail, and B. Stevenson (2013)
J. Bacteriol. 195, 4915-4923
   Abstract »    Full Text »    PDF »
Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution.
A. Haller, R. B. Altman, M. F. Souliere, S. C. Blanchard, and R. Micura (2013)
PNAS 110, 4188-4193
   Abstract »    Full Text »    PDF »
Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
N. J. Baird and A. R. Ferre-D'Amare (2013)
RNA 19, 167-176
   Abstract »    Full Text »    PDF »
Riboswitches and the RNA World.
R. R. Breaker (2012)
Cold Spring Harb Perspect Biol 4, a003566
   Abstract »    Full Text »    PDF »
Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride.
J. L. Baker, N. Sudarsan, Z. Weinberg, A. Roth, R. B. Stockbridge, and R. R. Breaker (2012)
Science 335, 233-235
   Abstract »    Full Text »    PDF »
Direct structural analysis of modified RNA by fluorescent in-line probing.
B. Strauss, A. Nierth, M. Singer, and A. Jaschke (2012)
Nucleic Acids Res. 40, 861-870
   Abstract »    Full Text »    PDF »
Mechanism for gene control by a natural allosteric group I ribozyme.
A. G. Y. Chen, N. Sudarsan, and R. R. Breaker (2011)
RNA 17, 1967-1972
   Abstract »    Full Text »    PDF »
Versatile RNA-sensing transcriptional regulators for engineering genetic networks.
J. B. Lucks, L. Qi, V. K. Mutalik, D. Wang, and A. P. Arkin (2011)
PNAS 108, 8617-8622
   Abstract »    Full Text »    PDF »
Transcription Antitermination by a Phosphorylated Response Regulator and Cobalamin-Dependent Termination at a B12 Riboswitch Contribute to Ethanolamine Utilization in Enterococcus faecalis.
K. A. Baker and M. Perego (2011)
J. Bacteriol. 193, 2575-2586
   Abstract »    Full Text »    PDF »
Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.
T. V. Erion and S. A. Strobel (2011)
RNA 17, 74-84
   Abstract »    Full Text »    PDF »
An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger.
E. R. Lee, J. L. Baker, Z. Weinberg, N. Sudarsan, and R. R. Breaker (2010)
Science 329, 845-848
   Abstract »    Full Text »    PDF »
Transcription attenuation in bacteria: theme and variations.
M. Naville, D. Gautheret, M. Naville, and D. Gautheret (2010)
Briefings in Functional Genomics 9, 178-189
   Abstract »    Full Text »    PDF »
A pH-responsive riboregulator.
G. Nechooshtan, M. Elgrably-Weiss, A. Sheaffer, E. Westhof, and S. Altuvia (2009)
Genes & Dev. 23, 2650-2662
   Abstract »    Full Text »    PDF »
Transcription attenuation in bacteria: theme and variations.
M. Naville and D. Gautheret (2009)
Briefings in Functional Genomics 8, 482-492
   Abstract »    Full Text »    PDF »
A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
E. Poiata, M. M. Meyer, T. D. Ames, and R. R. Breaker (2009)
RNA 15, 2046-2056
   Abstract »    Full Text »    PDF »
Evolution in an RNA World.
G.F. Joyce (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Riboswitch RNAs: using RNA to sense cellular metabolism.
T. M. Henkin (2008)
Genes & Dev. 22, 3383-3390
   Abstract »    Full Text »    PDF »
Higher-Order Cellular Information Processing with Synthetic RNA Devices.
M. N. Win and C. D. Smolke (2008)
Science 322, 456-460
   Abstract »    Full Text »    PDF »
Comparative genomic analysis of T-box regulatory systems in bacteria.
A. G. Vitreschak, A. A. Mironov, V. A. Lyubetsky, and M. S. Gelfand (2008)
RNA 14, 717-735
   Abstract »    Full Text »    PDF »
Complex Riboswitches.
R. R. Breaker (2008)
Science 319, 1795-1797
   Abstract »    Full Text »    PDF »
Chemical basis of glycine riboswitch cooperativity.
M. Kwon and S. A. Strobel (2008)
RNA 14, 25-34
   Abstract »    Full Text »    PDF »
Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
J. N. Kim, A. Roth, and R. R. Breaker (2007)
PNAS 104, 16092-16097
   Abstract »    Full Text »    PDF »
Ligand recognition determinants of guanine riboswitches.
J. Mulhbacher and D. A. Lafontaine (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach.
K. Lang, R. Rieder, and R. Micura (2007)
Nucleic Acids Res. 35, 5370-5378
   Abstract »    Full Text »    PDF »
A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
S. Blouin and D. A. Lafontaine (2007)
RNA 13, 1256-1267
   Abstract »    Full Text »    PDF »
Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline.
Z. Weinberg, J. E. Barrick, Z. Yao, A. Roth, J. N. Kim, J. Gore, J. X. Wang, E. R. Lee, K. F. Block, N. Sudarsan, et al. (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
R. Welz and R. R. Breaker (2007)
RNA 13, 573-582
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882