Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 314 (5804): 1454-1457

Copyright © 2006 by the American Association for the Advancement of Science

Rapid Chemically Induced Changes of PtdIns(4,5)P2 Gate KCNQ Ion Channels

Byung-Chang Suh,1* Takanari Inoue,2* Tobias Meyer,2 Bertil Hille1{dagger}

Abstract: To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C–mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.

1 Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
2 Department of Molecular Pharmacology, Stanford University, Clark Center, 318 Campus Drive, Stanford, CA 94305, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: hille{at}

A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi.
G. R. V. Hammond, M. P. Machner, and T. Balla (2014)
J. Cell Biol. 205, 113-126
   Abstract »    Full Text »    PDF »
Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems.
V. Sample, S. Mehta, and J. Zhang (2014)
J. Cell Sci. 127, 1151-1160
   Abstract »    Full Text »    PDF »
M1-Muscarinic Receptors Promote Fear Memory Consolidation via Phospholipase C and the M-Current.
M. B. Young and S. A. Thomas (2014)
J. Neurosci. 34, 1570-1578
   Abstract »    Full Text »    PDF »
PIP3 Induces the Recycling of Receptor Tyrosine Kinases.
V. Laketa, S. Zarbakhsh, A. Traynor-Kaplan, A. MacNamara, D. Subramanian, M. Putyrski, R. Mueller, A. Nadler, M. Mentel, J. Saez-Rodriguez, et al. (2014)
Science Signaling 7, ra5
   Abstract »    Full Text »    PDF »
Dynamic PIP2 interactions with voltage sensor elements contribute to KCNQ2 channel gating.
Q. Zhang, P. Zhou, Z. Chen, M. Li, H. Jiang, Z. Gao, and H. Yang (2013)
PNAS 110, 20093-20098
   Abstract »    Full Text »    PDF »
The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts.
J. V. Thevathasan, E. Tan, H. Zheng, Y.-C. Lin, Y. Li, T. Inoue, and M. Fivaz (2013)
Mol. Biol. Cell 24, 2228-2237
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli.
A. Garcia-Elias, S. Mrkonjic, C. Pardo-Pastor, H. Inada, U. A. Hellmich, F. Rubio-Moscardo, C. Plata, R. Gaudet, R. Vicente, and M. A. Valverde (2013)
PNAS 110, 9553-9558
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels.
P. Zhou, H. Yu, M. Gu, F.-j. Nan, Z. Gao, and M. Li (2013)
PNAS 110, 8726-8731
   Abstract »    Full Text »    PDF »
Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling.
E. J. Dickson, B. H. Falkenburger, and B. Hille (2013)
J. Gen. Physiol. 141, 521-535
   Abstract »    Full Text »    PDF »
Quantitative properties and receptor reserve of the DAG and PKC branch of Gq-coupled receptor signaling.
B. H. Falkenburger, E. J. Dickson, and B. Hille (2013)
J. Gen. Physiol. 141, 537-555
   Abstract »    Full Text »    PDF »
A mechanism for different receptors coupled to the same G protein to generate different responses mediated by different second messengers.
D.-O. D. Mak (2013)
J. Gen. Physiol. 141, 513-516
   Full Text »    PDF »
Single-channel basis for the slow activation of the repolarizing cardiac potassium current, IKs.
D. Werry, J. Eldstrom, Z. Wang, and D. Fedida (2013)
PNAS 110, E996-E1005
   Abstract »    Full Text »    PDF »
The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C.
J. Schiekel, M. Lindner, A. Hetzel, K. Wemhoner, V. Renigunta, G. Schlichthorl, N. Decher, D. Oliver, and J. Daut (2013)
Cardiovasc Res 97, 97-105
   Abstract »    Full Text »    PDF »
Synthetic spatially graded Rac activation drives cell polarization and movement.
B. Lin, W. R. Holmes, C. J. Wang, T. Ueno, A. Harwell, L. Edelstein-Keshet, T. Inoue, and A. Levchenko (2012)
PNAS 109, E3668-E3677
   Abstract »    Full Text »    PDF »
A human phospholipid phosphatase activated by a transmembrane control module.
C. R. Halaszovich, M. G. Leitner, A. Mavrantoni, A. Le, L. Frezza, A. Feuer, D. N. Schreiber, C. A. Villalba-Galea, and D. Oliver (2012)
J. Lipid Res. 53, 2266-2274
   Abstract »    Full Text »    PDF »
Optogenetic control of phosphoinositide metabolism.
O. Idevall-Hagren, E. J. Dickson, B. Hille, D. K. Toomre, and P. De Camilli (2012)
PNAS 109, E2316-E2323
   Abstract »    Full Text »    PDF »
Regulation of voltage-gated potassium channels by PI(4,5)P2.
M. Kruse, G. R. V. Hammond, and B. Hille (2012)
J. Gen. Physiol. 140, 189-205
   Abstract »    Full Text »    PDF »
Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation.
A. Kosenko, S. Kang, I. M. Smith, D. L. Greene, L. K. Langeberg, J. D. Scott, and N. Hoshi (2012)
EMBO J. 31, 3147-3156
   Abstract »    Full Text »    PDF »
Phosphoinositide isoforms determine compartment-specific ion channel activity.
X. Zhang, X. Li, and H. Xu (2012)
PNAS 109, 11384-11389
   Abstract »    Full Text »    PDF »
Distinct subunit contributions to the activation of M-type potassium channels by PI(4,5)P2.
V. Telezhkin, D. A. Brown, and A. J. Gibb (2012)
J. Gen. Physiol. 140, 41-53
   Abstract »    Full Text »    PDF »
Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor.
D. J. Toth, J. T. Toth, G. Gulyas, A. Balla, T. Balla, L. Hunyady, and P. Varnai (2012)
J. Cell Sci. 125, 2185-2197
   Abstract »    Full Text »    PDF »
Structural Requirements of Membrane Phospholipids for M-type Potassium Channel Activation and Binding.
V. Telezhkin, J. M. Reilly, A. M. Thomas, A. Tinker, and D. A. Brown (2012)
J. Biol. Chem. 287, 10001-10012
   Abstract »    Full Text »    PDF »
A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P2-diacylglycerol signalling.
Y. Imai, K. Itsuki, Y. Okamura, R. Inoue, and M. X. Mori (2012)
J. Physiol. 590, 1101-1119
   Abstract »    Full Text »    PDF »
M channel enhancers and physiological M channel block.
J. E. Linley, L. Pettinger, D. Huang, and N. Gamper (2012)
J. Physiol. 590, 793-807
   Abstract »    Full Text »    PDF »
PLC{zeta} causes Ca2+ oscillations in mouse eggs by targeting intracellular and not plasma membrane PI(4,5)P2.
Y. Yu, M. Nomikos, M. Theodoridou, G. Nounesis, F. A. Lai, and K. Swann (2012)
Mol. Biol. Cell 23, 371-380
   Abstract »    Full Text »    PDF »
Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C: IMPLICATIONS ON GATING OF DROSOPHILA TRPL (TRANSIENT RECEPTOR POTENTIAL-LIKE) CHANNEL.
S. Lev, B. Katz, V. Tzarfaty, and B. Minke (2012)
J. Biol. Chem. 287, 1436-1447
   Abstract »    Full Text »    PDF »
Essential Role for Phosphatidylinositol 4,5-Bisphosphate in the Expression, Regulation, and Gating of the Slow Afterhyperpolarization Current in the Cerebral Cortex.
C. Villalobos, R. C. Foehring, J. C. Lee, and R. Andrade (2011)
J. Neurosci. 31, 18303-18312
   Abstract »    Full Text »    PDF »
Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization.
T. Ueno, B. H. Falkenburger, C. Pohlmeyer, and T. Inoue (2011)
Science Signaling 4, ra87
   Abstract »    Full Text »    PDF »
GRK5 promotes F-actin bundling and targets bundles to membrane structures to control neuronal morphogenesis.
Y. Chen, F. Wang, H. Long, Y. Chen, Z. Wu, and L. Ma (2011)
J. Cell Biol. 194, 905-920
   Abstract »    Full Text »    PDF »
Probing the regulation of TASK potassium channels by PI(4,5)P2 with switchable phosphoinositide phosphatases.
M. Lindner, M. G. Leitner, C. R. Halaszovich, G. R. V. Hammond, and D. Oliver (2011)
J. Physiol. 589, 3149-3162
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3,5-bisphosphate increases intracellular free Ca2+ in arterial smooth muscle cells and elicits vasocontraction.
N. Silswal, N. K. Parelkar, M. J. Wacker, M. Brotto, and J. Andresen (2011)
Am J Physiol Heart Circ Physiol 300, H2016-H2026
   Abstract »    Full Text »    PDF »
Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential.
J. Lacroix, C. R. Halaszovich, D. N. Schreiber, M. G. Leitner, F. Bezanilla, D. Oliver, and C. A. Villalba-Galea (2011)
J. Biol. Chem. 286, 17945-17953
   Abstract »    Full Text »    PDF »
AKAP79/150 Signal Complexes in G-Protein Modulation of Neuronal Ion Channels.
J. Zhang, M. Bal, S. Bierbower, O. Zaika, and M. S. Shapiro (2011)
J. Neurosci. 31, 7199-7211
   Abstract »    Full Text »    PDF »
Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord.
Y. H. Belgacem and L. N. Borodinsky (2011)
PNAS 108, 4482-4487
   Abstract »    Full Text »    PDF »
Optical probing of a dynamic membrane interaction that regulates the TREK1 channel.
G. Sandoz, S. C. Bell, and E. Y. Isacoff (2011)
PNAS 108, 2605-2610
   Abstract »    Full Text »    PDF »
Characterization of a Binding Site for Anionic Phospholipids on KCNQ1.
A. M. Thomas, S. C. Harmer, T. Khambra, and A. Tinker (2011)
J. Biol. Chem. 286, 2088-2100
   Abstract »    Full Text »    PDF »
Combined Phosphoinositide and Ca2+ Signals Mediating Receptor Specificity toward Neuronal Ca2+ Channels.
O. Zaika, J. Zhang, and M. S. Shapiro (2011)
J. Biol. Chem. 286, 830-841
   Abstract »    Full Text »    PDF »
Aminoglycosides Inhibit KCNQ4 Channels in Cochlear Outer Hair Cells via Depletion of Phosphatidylinositol(4,5)bisphosphate.
M. G. Leitner, C. R. Halaszovich, and D. Oliver (2011)
Mol. Pharmacol. 79, 51-60
   Abstract »    Full Text »    PDF »
Direct and Specific Activation of Human Inward Rectifier K+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate.
N. D'Avanzo, W. W. L. Cheng, D. A. Doyle, and C. G. Nichols (2010)
J. Biol. Chem. 285, 37129-37132
   Abstract »    Full Text »    PDF »
Light Activation of the Phosphoinositide Cycle in Intrinsically Photosensitive Chicken Retinal Ganglion Cells.
M. A. Contin, D. M. Verra, G. Salvador, M. Ilincheta, N. M. Giusto, and M. E. Guido (2010)
Invest. Ophthalmol. Vis. Sci. 51, 5491-5498
   Abstract »    Full Text »    PDF »
Phosphoinositides: lipid regulators of membrane proteins.
B. H. Falkenburger, J. B. Jensen, E. J. Dickson, B.-C. Suh, and B. Hille (2010)
J. Physiol. 588, 3179-3185
   Abstract »    Full Text »    PDF »
The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics.
F. Nakatsu, R. M. Perera, L. Lucast, R. Zoncu, J. Domin, F. B. Gertler, D. Toomre, and P. De Camilli (2010)
J. Cell Biol. 190, 307-315
   Abstract »    Full Text »    PDF »
Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling.
Z. Szentpetery, P. Varnai, and T. Balla (2010)
PNAS 107, 8225-8230
   Abstract »    Full Text »    PDF »
Strategies for protein synthetic biology.
R. Grunberg and L. Serrano (2010)
Nucleic Acids Res. 38, 2663-2675
   Abstract »    Full Text »    PDF »
Depolarization Increases Phosphatidylinositol (PI) 4,5-Bisphosphate Level and KCNQ Currents through PI 4-Kinase Mechanisms.
X. Zhang, X. Chen, C. Jia, X. Geng, X. Du, and H. Zhang (2010)
J. Biol. Chem. 285, 9402-9409
   Abstract »    Full Text »    PDF »
Homeostatic regulation of M-current modulates synaptic integration in secretomotor, but not vasomotor, sympathetic neurons in the bullfrog.
P. H. M. Kullmann and J. P. Horn (2010)
J. Physiol. 588, 923-938
   Abstract »    Full Text »    PDF »
Increased Coupled Gating of L-Type Ca2+ Channels During Hypertension and Timothy Syndrome.
M. F. Navedo, E. P. Cheng, C. Yuan, S. Votaw, J. D. Molkentin, J. D. Scott, and L. F. Santana (2010)
Circ. Res. 106, 748-756
   Abstract »    Full Text »    PDF »
K. Tsujita, T. Itoh, A. Kondo, M. Oyama, H. Kozuka-Hata, Y. Irino, J. Hasegawa, and T. Takenawa (2010)
J. Biol. Chem. 285, 6781-6789
   Abstract »    Full Text »    PDF »
Ca2+/Calmodulin Disrupts AKAP79/150 Interactions with KCNQ (M-Type) K+ Channels.
M. Bal, J. Zhang, C. C. Hernandez, O. Zaika, and M. S. Shapiro (2010)
J. Neurosci. 30, 2311-2323
   Abstract »    Full Text »    PDF »
Putting G protein-coupled receptor-mediated activation of phospholipase C in the limelight.
T. Balla (2010)
J. Gen. Physiol. 135, 77-80
   Full Text »    PDF »
An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis.
G. D. Fairn, K. Ogata, R. J. Botelho, P. D. Stahl, R. A. Anderson, P. De Camilli, T. Meyer, S. Wodak, and S. Grinstein (2009)
J. Cell Biol. 187, 701-714
   Abstract »    Full Text »    PDF »
The Ca2+ channel {beta} subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current.
J. F. Heneghan, T. Mitra-Ganguli, L. F. Stanish, L. Liu, R. Zhao, and A. R. Rittenhouse (2009)
J. Gen. Physiol. 134, 369-384
   Abstract »    Full Text »    PDF »
Affinity for phosphatidylinositol 4,5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels.
C. C. Hernandez, B. Falkenburger, and M. S. Shapiro (2009)
J. Gen. Physiol. 134, 437-448
   Abstract »    Full Text »    PDF »
An oily competition: role of {beta} subunit palmitoylation for Ca2+ channel modulation by fatty acids.
J. Striessnig (2009)
J. Gen. Physiol. 134, 363-367
   Full Text »    PDF »
The Signaling Mechanisms Underlying Cell Polarity and Chemotaxis.
F. Wang (2009)
Cold Spring Harb Perspect Biol 1, a002980
   Abstract »    Full Text »    PDF »
Phosphoinositide Signaling: New Tools and Insights.
T. Balla, Z. Szentpetery, and Y. J. Kim (2009)
Physiology 24, 231-244
   Abstract »    Full Text »    PDF »
Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides.
M. K. Korzeniowski, M. A. Popovic, Z. Szentpetery, P. Varnai, S. S. Stojilkovic, and T. Balla (2009)
J. Biol. Chem. 284, 21027-21035
   Abstract »    Full Text »    PDF »
Supramolecular Assemblies and Localized Regulation of Voltage-Gated Ion Channels.
S. Dai, D. D. Hall, and J. W. Hell (2009)
Physiol Rev 89, 411-452
   Abstract »    Full Text »    PDF »
Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels.
J. B. Jensen, J. S. Lyssand, C. Hague, and B. Hille (2009)
J. Gen. Physiol. 133, 347-359
   Abstract »    Full Text »    PDF »
Phosphoinositide phosphatases and disease.
P. W. Majerus and J. D. York (2009)
J. Lipid Res. 50, S249-S254
   Abstract »    Full Text »    PDF »
Phospholipase C-Mediated Regulation of Transient Receptor Potential Vanilloid 6 Channels: Implications in Active Intestinal Ca2+ Transport.
B. Thyagarajan, B. S. Benn, S. Christakos, and T. Rohacs (2009)
Mol. Pharmacol. 75, 608-616
   Abstract »    Full Text »    PDF »
Membrane Lipid Modulations Remove Divalent Open Channel Block from TRP-Like and NMDA Channels.
M. Parnas, B. Katz, S. Lev, V. Tzarfaty, D. Dadon, A. Gordon-Shaag, H. Metzner, R. Yaka, and B. Minke (2009)
J. Neurosci. 29, 2371-2383
   Abstract »    Full Text »    PDF »
Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane.
J.-J. Hao, Y. Liu, M. Kruhlak, K. E. Debell, B. L. Rellahan, and S. Shaw (2009)
J. Cell Biol. 184, 451-462
   Abstract »    Full Text »    PDF »
Ci-VSP Is a Depolarization-activated Phosphatidylinositol-4,5-bisphosphate and Phosphatidylinositol-3,4,5-trisphosphate 5'-Phosphatase.
C. R. Halaszovich, D. N. Schreiber, and D. Oliver (2009)
J. Biol. Chem. 284, 2106-2113
   Abstract »    Full Text »    PDF »
Activity of the Neuronal Cold Sensor TRPM8 Is Regulated by Phospholipase C via the Phospholipid Phosphoinositol 4,5-Bisphosphate.
R. L. Daniels, Y. Takashima, and D. D. McKemy (2009)
J. Biol. Chem. 284, 1570-1582
   Abstract »    Full Text »    PDF »
A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN.
M. Rahdar, T. Inoue, T. Meyer, J. Zhang, F. Vazquez, and P. N. Devreotes (2009)
PNAS 106, 480-485
   Abstract »    Full Text »    PDF »
The Nociceptor Ion Channel TRPA1 Is Potentiated and Inactivated by Permeating Calcium Ions.
Y. Y. Wang, R. B. Chang, H. N. Waters, D. D. McKemy, and E. R. Liman (2008)
J. Biol. Chem. 283, 32691-32703
   Abstract »    Full Text »    PDF »
Regulation of PLC{beta}1a membrane anchoring by its substrate phosphatidylinositol (4,5)-bisphosphate.
M. J. W. Adjobo-Hermans, J. Goedhart, and T. W. J. Gadella Jr (2008)
J. Cell Sci. 121, 3770-3777
   Abstract »    Full Text »    PDF »
Actin Filament Assembly by Myristoylated, Alanine-rich C Kinase Substrate-Phosphatidylinositol-4,5-diphosphate Signaling Is Critical for Dendrite Branching.
H. Li, G. Chen, B. Zhou, and S. Duan (2008)
Mol. Biol. Cell 19, 4804-4813
   Abstract »    Full Text »    PDF »
Identification and Functional Characterization of an N-terminal Oligomerization Domain for Polycystin-2.
S. Feng, G. M. Okenka, C.-X. Bai, A. J. Streets, L. J. Newby, B. T. DeChant, L. Tsiokas, T. Obara, and A. C. M. Ong (2008)
J. Biol. Chem. 283, 28471-28479
   Abstract »    Full Text »    PDF »
Determinants of Molecular Specificity in Phosphoinositide Regulation: PHOSPHATIDYLINOSITOL (4,5)-BISPHOSPHATE (PI(4,5)P2) IS THE ENDOGENOUS LIPID REGULATING TRPV1.
R. M. Klein, C. A. Ufret-Vincenty, L. Hua, and S. E. Gordon (2008)
J. Biol. Chem. 283, 26208-26216
   Abstract »    Full Text »    PDF »
Loss of AKAP150 perturbs distinct neuronal processes in mice.
B. J. Tunquist, N. Hoshi, E. S. Guire, F. Zhang, K. Mullendorff, L. K. Langeberg, J. Raber, and J. D. Scott (2008)
PNAS 105, 12557-12562
   Abstract »    Full Text »    PDF »
A Carboxy-terminal Inter-Helix Linker As the Site of Phosphatidylinositol 4,5-Bisphosphate Action on Kv7 (M-type) K+ Channels.
C. C. Hernandez, O. Zaika, and M. S. Shapiro (2008)
J. Gen. Physiol. 132, 361-381
   Abstract »    Full Text »    PDF »
Direct Regulation of BK Channels by Phosphatidylinositol 4,5-Bisphosphate as a Novel Signaling Pathway.
T. Vaithianathan, A. Bukiya, J. Liu, P. Liu, M. Asuncion-Chin, Z. Fan, and A. Dopico (2008)
J. Gen. Physiol. 132, 13-28
   Abstract »    Full Text »    PDF »
Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby.
K. V. Quinn, P. Behe, and A. Tinker (2008)
J. Physiol. 586, 2855-2871
   Abstract »    Full Text »    PDF »
Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate Mediates Calcium-induced Inactivation of TRPV6 Channels.
B. Thyagarajan, V. Lukacs, and T. Rohacs (2008)
J. Biol. Chem. 283, 14980-14987
   Abstract »    Full Text »    PDF »
Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade.
D. M. Graham, K. Y. Wong, P. Shapiro, C. Frederick, K. Pattabiraman, and D. M. Berson (2008)
J Neurophysiol 99, 2522-2532
   Abstract »    Full Text »    PDF »
Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor.
N. Abe, T. Inoue, T. Galvez, L. Klein, and T. Meyer (2008)
J. Cell Sci. 121, 1488-1494
   Abstract »    Full Text »    PDF »
Calmodulin binding to M-type K+ channels assayed by TIRF/FRET in living cells.
M. Bal, O. Zaika, P. Martin, and M. S. Shapiro (2008)
J. Physiol. 586, 2307-2320
   Abstract »    Full Text »    PDF »
Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications.
C. C. Hernandez, O. Zaika, G. P. Tolstykh, and M. S. Shapiro (2008)
J. Physiol. 586, 1811-1821
   Abstract »    Full Text »    PDF »
Chloride Movements in Human Neutrophils during Phagocytosis: Characterization and Relationship to Granule Release.
S. Busetto, E. Trevisan, E. Decleva, P. Dri, and R. Menegazzi (2007)
J. Immunol. 179, 4110-4124
   Abstract »    Full Text »    PDF »
The secret lives of voltage sensors.
C. A. Ahern (2007)
J. Physiol. 583, 813-814
   Full Text »    PDF »
Reply from N. Gamper and M. S. Shapiro.
N. Gamper and M. S. Shapiro (2007)
J. Physiol. 583, 1167
   Full Text »    PDF »
Electrostatic Interaction of Internal Mg2+ with Membrane PIP2 Seen with KCNQ K+ Channels.
B.-C. Suh and B. Hille (2007)
J. Gen. Physiol. 130, 241-256
   Abstract »    Full Text »    PDF »
Inositol Triphosphate-Mediated Ca2+ Signals Direct Purinergic P2Y Receptor Regulation of Neuronal Ion Channels.
O. Zaika, G. P. Tolstykh, D. B. Jaffe, and M. S. Shapiro (2007)
J. Neurosci. 27, 8914-8926
   Abstract »    Full Text »    PDF »
Regulation of Neurite Growth by Spontaneous Ca2+ Oscillations in Astrocytes.
K. Kanemaru, Y. Okubo, K. Hirose, and M. Iino (2007)
J. Neurosci. 27, 8957-8966
   Abstract »    Full Text »    PDF »
On the physiological roles of PIP2 at cardiac Na+ Ca2+ exchangers and KATP channels: a long journey from membrane biophysics into cell biology.
D. W. Hilgemann (2007)
J. Physiol. 582, 903-909
   Abstract »    Full Text »    PDF »
Regulation of M(Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2 hydrolysis: significance for receptor-mediated inhibition.
D. A. Brown, S. A. Hughes, S. J. Marsh, and A. Tinker (2007)
J. Physiol. 582, 917-925
   Abstract »    Full Text »    PDF »
Imaging and manipulating phosphoinositides in living cells.
T. Balla (2007)
J. Physiol. 582, 927-937
   Abstract »    Full Text »    PDF »
Regulation of KCNQ channels by manipulation of phosphoinositides.
B.-C. Suh and B. Hille (2007)
J. Physiol. 582, 911-916
   Abstract »    Full Text »    PDF »
Target-specific PIP2 signalling: how might it work?.
N. Gamper and M. S. Shapiro (2007)
J. Physiol. 582, 967-975
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882