Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 314 (5806): 1776-1780

Copyright © 2006 by the American Association for the Advancement of Science

A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii

S. Taylor,1* A. Barragan,1,2* C. Su,1,3* B. Fux,1 S. J. Fentress,1 K. Tang,1 W. L. Beatty,1 H. El Hajj,4 M. Jerome,5 M. S. Behnke,5 M. White,5 J. C. Wootton,6 L. D. Sibley1{dagger}

Abstract: Toxoplasma gondii strains differ dramatically in virulence despite being genetically very similar. Genetic mapping revealed two closely adjacent quantitative trait loci on parasite chromosome VIIa that control the extreme virulence of the type I lineage. Positional cloning identified the candidate virulence gene ROP18, a highly polymorphic serine-threonine kinase that was secreted into the host cell during parasite invasion. Transfection of the virulent ROP18 allele into a nonpathogenic type III strain increased growth and enhanced mortality by 4 to 5 logs. These attributes of ROP18 required kinase activity, which revealed that secretion of effectors is a major component of parasite virulence.

1 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA.
2 Swedish Institute for Infectious Disease Control and Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden.
3 Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
4 Unité Mixte de Recherche (Joint Research Unit) CNRS 5539, University Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France.
5 Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA.
6 Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: sibley{at}borcim.wustl.edu

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Expression of the Essential Kinase PfCDPK1 from Plasmodium falciparum in Toxoplasma gondii Facilitates the Discovery of Novel Antimalarial Drugs.
R. Y. Gaji, L. Checkley, M. L. Reese, M. T. Ferdig, and G. Arrizabalaga (2014)
Antimicrob. Agents Chemother. 58, 2598-2607
   Abstract »    Full Text »    PDF »
Differential Locus Expansion Distinguishes Toxoplasmatinae Species and Closely Related Strains of Toxoplasma gondii.
Y. Adomako-Ankomah, G. M. Wier, A. L. Borges, H. E. Wand, and J. P. Boyle (2014)
mBio 5, e01003-13
   Abstract »    Full Text »    PDF »
Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse.
A. Alaganan, S. J. Fentress, K. Tang, Q. Wang, and L. D. Sibley (2014)
PNAS 111, 1126-1131
   Abstract »    Full Text »    PDF »
Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence.
D. Lim, D. A. Gold, L. Julien, E. E. Rosowski, W. Niedelman, M. B. Yaffe, and J. P. J. Saeij (2013)
J. Biol. Chem. 288, 34968-34980
   Abstract »    Full Text »    PDF »
Immune to defeat.
M. L. Reese (2013)
eLife Sci 2, e01599
   Abstract »    Full Text »    PDF »
Toxoplasma gondii modulates the dynamics of human monocyte adhesion to vascular endothelium under fluidic shear stress.
K. S. Harker, N. Ueno, T. Wang, C. Bonhomme, W. Liu, and M. B. Lodoen (2013)
J. Leukoc. Biol. 93, 789-800
   Abstract »    Full Text »    PDF »
Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes.
K. A. Walzer, Y. Adomako-Ankomah, R. A. Dam, D. C. Herrmann, G. Schares, J. P. Dubey, and J. P. Boyle (2013)
PNAS 110, 7446-7451
   Abstract »    Full Text »    PDF »
Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse.
J. Lilue, U. B. Muller, T. Steinfeldt, and J. C. Howard (2013)
eLife Sci 2, e01298
   Abstract »    Full Text »    PDF »
Integrated Bioinformatic and Targeted Deletion Analyses of the SRS Gene Superfamily Identify SRS29C as a Negative Regulator of Toxoplasma Virulence.
J. D. Wasmuth, V. Pszenny, S. Haile, E. M. Jansen, A. T. Gast, A. Sher, J. P. Boyle, M. J. Boulanger, J. Parkinson, and M. E. Grigg (2012)
mBio 3, e00321-12
   Abstract »    Full Text »    PDF »
A Focused Small-Molecule Screen Identifies 14 Compounds with Distinct Effects on Toxoplasma gondii.
E. T. Kamau, A. R. Srinivasan, M. J. Brown, M. G. Fair, E. J. Caraher, and J. P. Boyle (2012)
Antimicrob. Agents Chemother. 56, 5581-5590
   Abstract »    Full Text »    PDF »
Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity.
S. Minot, M. B. Melo, F. Li, D. Lu, W. Niedelman, S. S. Levine, and J. P. J. Saeij (2012)
PNAS 109, 13458-13463
   Abstract »    Full Text »    PDF »
Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages.
C. Su, A. Khan, P. Zhou, D. Majumdar, D. Ajzenberg, M.-L. Darde, X.-Q. Zhu, J. W. Ajioka, B. M. Rosenthal, J. P. Dubey, et al. (2012)
PNAS 109, 5844-5849
   Abstract »    Full Text »    PDF »
Epidemiology of and Diagnostic Strategies for Toxoplasmosis.
F. Robert-Gangneux and M.-L. Darde (2012)
Clin. Microbiol. Rev. 25, 264-296
   Abstract »    Full Text »    PDF »
The State of Research for AIDS-Associated Opportunistic Infections and the Importance of Sustaining Smaller Research Communities.
A. P. Sinai, E. S. Kaneshiro, H. Ward, L. M. Weiss, and M. T. Cushion (2012)
Eukaryot. Cell 11, 90-97
   Full Text »    PDF »
A Novel Benzodioxole-Containing Inhibitor of Toxoplasma gondii Growth Alters the Parasite Cell Cycle.
E. Kamau, T. Meehan, M. D. Lavine, G. Arrizabalaga, G. Mustata Wilson, and J. Boyle (2011)
Antimicrob. Agents Chemother. 55, 5438-5451
   Abstract »    Full Text »    PDF »
A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii.
A. Khan, N. Miller, D. S. Roos, J. P. Dubey, D. Ajzenberg, M. L. Darde, J. W. Ajioka, B. Rosenthal, and L. D. Sibley (2011)
mBio 2, e00228-11
   Abstract »    Full Text »    PDF »
Genetic approaches for understanding virulence in Toxoplasma gondii.
D. R. Weilhammer and A. Rasley (2011)
Briefings in Functional Genomics 10, 365-373
   Abstract »    Full Text »    PDF »
A Conserved Non-canonical Motif in the Pseudoactive Site of the ROP5 Pseudokinase Domain Mediates Its Effect on Toxoplasma Virulence.
M. L. Reese and J. C. Boothroyd (2011)
J. Biol. Chem. 286, 29366-29375
   Abstract »    Full Text »    PDF »
Migratory Activation of Primary Cortical Microglia upon Infection with Toxoplasma gondii.
I. Dellacasa-Lindberg, J. M. Fuks, R. B. G. Arrighi, H. Lambert, R. P. A. Wallin, B. J. Chambers, and A. Barragan (2011)
Infect. Immun. 79, 3046-3052
   Abstract »    Full Text »    PDF »
ATF6{beta} is a host cellular target of the Toxoplasma gondii virulence factor ROP18.
M. Yamamoto, J. S. Ma, C. Mueller, N. Kamiyama, H. Saiga, E. Kubo, T. Kimura, T. Okamoto, M. Okuyama, H. Kayama, et al. (2011)
J. Exp. Med. 208, 1533-1546
   Abstract »    Full Text »    PDF »
Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases.
M. S. Behnke, A. Khan, J. C. Wootton, J. P. Dubey, K. Tang, and L. D. Sibley (2011)
PNAS 108, 9631-9636
   Abstract »    Full Text »    PDF »
Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence.
M. L. Reese, G. M. Zeiner, J. P. J. Saeij, J. C. Boothroyd, and J. P. Boyle (2011)
PNAS 108, 9625-9630
   Abstract »    Full Text »    PDF »
Modulation of Early {beta}-Defensin-2 Production as a Mechanism Developed by Type I Toxoplasma gondii To Evade Human Intestinal Immunity.
V. Morampudi, M. Y. Braun, and S. D'Souza (2011)
Infect. Immun. 79, 2043-2050
   Abstract »    Full Text »    PDF »
Protective Immunity Induced by Toxoplasma gondii Rhoptry Protein 16 against Toxoplasmosis in Mice.
Z.-G. Yuan, X.-X. Zhang, X.-H. He, E. Petersen, D.-H. Zhou, Y. He, R.-Q. Lin, X.-Z. Li, X.-L. Chen, X.-R. Shi, et al. (2011)
Clin. Vaccine Immunol. 18, 119-124
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Activates Hypoxia-inducible Factor (HIF) by Stabilizing the HIF-1{alpha} Subunit via Type I Activin-like Receptor Kinase Receptor Signaling.
M. Wiley, K. R. Sweeney, D. A. Chan, K. M. Brown, C. McMurtrey, E. W. Howard, A. J. Giaccia, and I. J. Blader (2010)
J. Biol. Chem. 285, 26852-26860
   Abstract »    Full Text »    PDF »
Virulence of Toxoplasma gondii Is Associated with Distinct Dendritic Cell Responses and Reduced Numbers of Activated CD8+ T Cells.
E. D. Tait, K. A. Jordan, C. D. Dupont, T. H. Harris, B. Gregg, E. H. Wilson, M. Pepper, F. Dzierszinski, D. S. Roos, and C. A. Hunter (2010)
J. Immunol. 185, 1502-1512
   Abstract »    Full Text »    PDF »
Role for Parasite Genetic Diversity in Differential Host Responses to Trypanosoma brucei Infection.
L. J. Morrison, S. McLellan, L. Sweeney, C. N. Chan, A. MacLeod, A. Tait, and C. M. R. Turner (2010)
Infect. Immun. 78, 1096-1108
   Abstract »    Full Text »    PDF »
Phenotypic and Gene Expression Changes among Clonal Type I Strains of Toxoplasma gondii.
A. Khan, M. S. Behnke, I. R. Dunay, M. W. White, and L. D. Sibley (2009)
Eukaryot. Cell 8, 1828-1836
   Abstract »    Full Text »    PDF »
A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3.
M. Yamamoto, D. M. Standley, S. Takashima, H. Saiga, M. Okuyama, H. Kayama, E. Kubo, H. Ito, M. Takaura, T. Matsuda, et al. (2009)
J. Exp. Med. 206, 2747-2760
   Abstract »    Full Text »    PDF »
Genetic diversity of Toxoplasma gondii in animals and humans.
L. D. Sibley, A. Khan, J. W. Ajioka, and B. M. Rosenthal (2009)
Phil Trans R Soc B 364, 2749-2761
   Abstract »    Full Text »    PDF »
Role of the Type III Secretion System in a Hypervirulent Lineage of Bordetella bronchiseptica.
A. M. Buboltz, T. L. Nicholson, L. S. Weyrich, and E. T. Harvill (2009)
Infect. Immun. 77, 3969-3977
   Abstract »    Full Text »    PDF »
Proteome Analysis of Plasmodium falciparum Extracellular Secretory Antigens at Asexual Blood Stages Reveals a Cohort of Proteins with Possible Roles in Immune Modulation and Signaling.
M. Singh, P. Mukherjee, K. Narayanasamy, R. Arora, S. D. Sen, S. Gupta, K. Natarajan, and P. Malhotra (2009)
Mol. Cell. Proteomics 8, 2102-2118
   Abstract »    Full Text »    PDF »
Forward Genetics in Toxoplasma gondii Reveals a Family of Rhoptry Kinases That Mediates Pathogenesis.
L. D. Sibley, W. Qiu, S. Fentress, S. J. Taylor, A. Khan, and R. Hui (2009)
Eukaryot. Cell 8, 1085-1093
   Full Text »    PDF »
Identification of a Major Susceptibility Locus for Lethal Graft-versus-Host Disease in MHC-Matched Mice.
T. M. Cao, L. C. Lazzeroni, S. Tsai, W. W. Pang, A. Kao, N. J. Camp, A. Thomas, and J. A. Shizuru (2009)
J. Immunol. 183, 462-469
   Abstract »    Full Text »    PDF »
Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii.
W. Qiu, A. Wernimont, K. Tang, S. Taylor, V. Lunin, M. Schapira, S. Fentress, R. Hui, and L. D. Sibley (2009)
EMBO J. 28, 969-979
   Abstract »    Full Text »    PDF »
The Toxoplasma gondii-Shuttling Function of Dendritic Cells Is Linked to the Parasite Genotype.
H. Lambert, P. P. Vutova, W. C. Adams, K. Lore, and A. Barragan (2009)
Infect. Immun. 77, 1679-1688
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Presentations at the 10th International Workshops on Opportunistic Protists: 100 Years and Counting.
S. K. Halonen and L. M. Weiss (2009)
Eukaryot. Cell 8, 437-440
   Full Text »    PDF »
Polymorphic Mucin Antigens CpMuc4 and CpMuc5 Are Integral to Cryptosporidium parvum Infection In Vitro.
R. M. O'Connor, P. B. Burns, T. Ha-Ngoc, K. Scarpato, W. Khan, G. Kang, and H. Ward (2009)
Eukaryot. Cell 8, 461-469
   Abstract »    Full Text »    PDF »
Virulent Toxoplasma gondii Evade Immunity-Related GTPase-Mediated Parasite Vacuole Disruption within Primed Macrophages.
Y. Zhao, D. J. P. Ferguson, D. C. Wilson, J. C. Howard, L. D. Sibley, and G. S. Yap (2009)
J. Immunol. 182, 3775-3781
   Abstract »    Full Text »    PDF »
Host ER-parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii-infected dendritic cells.
R. S. Goldszmid, I. Coppens, A. Lev, P. Caspar, I. Mellman, and A. Sher (2009)
J. Exp. Med. 206, 399-410
   Abstract »    Full Text »    PDF »
The Toxoplasma gondii Dense Granule Protein GRA7 Is Phosphorylated upon Invasion and Forms an Unexpected Association with the Rhoptry Proteins ROP2 and ROP4.
J. D. Dunn, S. Ravindran, S.-K. Kim, and J. C. Boothroyd (2008)
Infect. Immun. 76, 5853-5861
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Rhoptry Discharge Correlates with Activation of the Early Growth Response 2 Host Cell Transcription Factor.
E. D. Phelps, K. R. Sweeney, and I. J. Blader (2008)
Infect. Immun. 76, 4703-4712
   Abstract »    Full Text »    PDF »
Expression Quantitative Trait Locus Mapping of Toxoplasma Genes Reveals Multiple Mechanisms for Strain-Specific Differences in Gene Expression.
J. P. Boyle, J. P. J. Saeij, S. Y. Harada, J. W. Ajioka, and J. C. Boothroyd (2008)
Eukaryot. Cell 7, 1403-1414
   Abstract »    Full Text »    PDF »
Organellar dynamics during the cell cycle of Toxoplasma gondii.
M. Nishi, K. Hu, J. M. Murray, and D. S. Roos (2008)
J. Cell Sci. 121, 1559-1568
   Abstract »    Full Text »    PDF »
Phosphoinositide-3-Kinase-Dependent, MyD88-Independent Induction of CC-Type Chemokines Characterizes the Macrophage Response to Toxoplasma gondii Strains with High Virulence.
C. W. Lee, W. Sukhumavasi, and E. Y. Denkers (2007)
Infect. Immun. 75, 5788-5797
   Abstract »    Full Text »    PDF »
Presentation of Toxoplasma gondii Antigens via the Endogenous Major Histocompatibility Complex Class I Pathway in Nonprofessional and Professional Antigen-Presenting Cells.
F. Dzierszinski, M. Pepper, J. S. Stumhofer, D. F. LaRosa, E. H. Wilson, L. A. Turka, S. K. Halonen, C. A. Hunter, and D. S. Roos (2007)
Infect. Immun. 75, 5200-5209
   Abstract »    Full Text »    PDF »
Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome.
A. Khan, B. Fux, C. Su, J. P. Dubey, M. L. Darde, J. W. Ajioka, B. M. Rosenthal, and L. D. Sibley (2007)
PNAS 104, 14872-14877
   Abstract »    Full Text »    PDF »
Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking.
M. B. Frankel, D. G. Mordue, and L. J. Knoll (2007)
PNAS 104, 10181-10186
   Abstract »    Full Text »    PDF »
Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis.
J. P. J. Saeij, J. P. Boyle, S. Coller, S. Taylor, L. D. Sibley, E. T. Brooke-Powell, J. W. Ajioka, and J. C. Boothroyd (2006)
Science 314, 1780-1783
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882